Home
Class 12
MATHS
int (1)/(sin^(2) x cos^(2)x) dx=?...

`int (1)/(sin^(2) x cos^(2)x) dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sin^2 x \cos^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1}{\sin^2 x \cos^2 x} \, dx \] We can rewrite this using the identity \( \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \): \[ \int \frac{4}{\sin^2(2x)} \, dx \] ### Step 2: Use the Cosecant Function We know that \( \frac{1}{\sin^2(2x)} = \csc^2(2x) \). Thus, we can rewrite the integral as: \[ 4 \int \csc^2(2x) \, dx \] ### Step 3: Integrate The integral of \( \csc^2(kx) \) is \( -\frac{1}{k} \cot(kx) + C \). Here, \( k = 2 \): \[ 4 \int \csc^2(2x) \, dx = 4 \left(-\frac{1}{2} \cot(2x) + C\right) = -2 \cot(2x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{\sin^2 x \cos^2 x} \, dx = -2 \cot(2x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sin^(2)x-4 cos^(2)x)dx

int(1)/(3sin^(2) x+4 cos^(2) x)dx

int(1)/(16sin^(2)x+25cos^(2)x)dx=

Evaluate int(1)/(4sin^(2) x + 9 cos^(2) x) dx

Evaluate: int(1)/(1+3sin^(2)x+8cos^(2)x)dx

int 1/(sin^2x cos^2x) dx

int((sinx+cosx)(1-sinxcosx))/(sin^(2)x cos^(2)x)dx=

int(1)/(cos^(2) x-3 sin^(2) x)dx

int ((4-5sin x) / (cos ^ (2) x) + (1) / (sin ^ (2) x cos ^ (2) x)) dx

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=