Home
Class 12
MATHS
int(sin x)/( sqrt(1+cos x))dx=?...

`int(sin x)/( sqrt(1+cos x))dx=?`

A

`sqrt(1+cos x) +c`

B

`-2sqrt(1+ cos x)+c`

C

`2sqrt(1+ cos x) +c`

D

`2(1+ cos x) +c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x}{\sqrt{1 + \cos x}} \, dx \), we can follow these steps: ### Step 1: Simplify the Integral We start with the integral: \[ I = \int \frac{\sin x}{\sqrt{1 + \cos x}} \, dx \] ### Step 2: Use a Trigonometric Identity Recall the identity for \( \sin x \): \[ \sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2} \] Also, we know that: \[ 1 + \cos x = 2 \cos^2 \frac{x}{2} \] Thus, we can rewrite the integral: \[ I = \int \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\sqrt{2 \cos^2 \frac{x}{2}}} \, dx \] This simplifies to: \[ I = \int \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\sqrt{2} \cos \frac{x}{2}} \, dx \] Cancelling \( \cos \frac{x}{2} \) gives: \[ I = \frac{2}{\sqrt{2}} \int \sin \frac{x}{2} \, dx \] ### Step 3: Factor Out Constants The constant \( \frac{2}{\sqrt{2}} \) can be simplified to \( \sqrt{2} \): \[ I = \sqrt{2} \int \sin \frac{x}{2} \, dx \] ### Step 4: Perform the Integral Now we integrate \( \sin \frac{x}{2} \): \[ \int \sin \frac{x}{2} \, dx = -2 \cos \frac{x}{2} + C \] Thus, substituting back, we have: \[ I = \sqrt{2} \left( -2 \cos \frac{x}{2} + C \right) \] ### Step 5: Final Result This simplifies to: \[ I = -2\sqrt{2} \cos \frac{x}{2} + C \] ### Final Answer \[ \int \frac{\sin x}{\sqrt{1 + \cos x}} \, dx = -2\sqrt{2} \cos \frac{x}{2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1+sin x)/(sqrt(x-cos x))dx

Evaluate the following integral: int_(0)^( pi/2)(sin x)/(sqrt(1+cos x))dx

Evaluate: ( i ) int(1+sin x)/(sqrt(x-cos x))dx (ii) int(1)/(sqrt(1-x^(2))(sin^(-1)x)^(2))dx

I= int ( sin x dx)/( sqrt( cos x) ) .

Evaluate the following integrals. int sin x sqrt( 1 - cos 2x)dx

Evaluate: (i) int(cos^(3)x)/(sqrt(sin x))dx(ii)int(sin^(3)x)/(sqrt(cos x))dx

int sin x sqrt(1-cos2x)dx

int sin x sqrt(1+cos2x)dx

int sin x sqrt(1-cos2x)dx

Integrate the following: int(sin2x)/sqrt(1+cos^2x)dx