Home
Class 12
MATHS
int (e^(m tan^(-1) x))/(1+x^(2)) dx=?...

`int (e^(m tan^(-1) x))/(1+x^(2)) dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{e^{m \tan^{-1} x}}{1+x^2} \, dx, \] we can use a substitution method. Let's go through the steps: ### Step 1: Substitution Let \( t = \tan^{-1} x \). Then, we differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = \frac{1}{1+x^2} \implies dx = (1+x^2) dt. \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ x = \tan(t) \quad \text{and} \quad 1 + x^2 = 1 + \tan^2(t) = \sec^2(t). \] Thus, the integral becomes: \[ \int e^{m t} \cdot \frac{(1+x^2) dt}{1+x^2} = \int e^{m t} \, dt. \] ### Step 3: Integrate Now, we can integrate: \[ \int e^{m t} \, dt = \frac{1}{m} e^{m t} + C, \] where \( C \) is the constant of integration. ### Step 4: Back Substitute Now we substitute back \( t = \tan^{-1} x \): \[ \frac{1}{m} e^{m \tan^{-1} x} + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{e^{m \tan^{-1} x}}{1+x^2} \, dx = \frac{1}{m} e^{m \tan^{-1} x} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(e^(a tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx

int(m tan^(-1)x)/(1+x^(2))dx

int(e^(ln tan^(-1)x))/(1+x^(2))dx

Evaluate : int ((e^( tan^(-1)x) )/ (1+x^2)) dx

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int(e^(tan^(-1)x))/(1+x^(2))dx

int(e^(tan^(-1)x))/(1+x^(2))dx

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx

Evaluate: int(e^(tan^^)((-1)x))/(1+x^(2))dx