Home
Class 12
MATHS
int sin^(3) x cos^(3) x dx =?...

`int sin^(3) x cos^(3) x dx =?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin^3 x \cos^3 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \sin^3 x \cos^3 x \, dx \] We can express \( \sin^3 x \) as \( \sin x \cdot \sin^2 x \) and use the identity \( \sin^2 x = 1 - \cos^2 x \): \[ \sin^3 x = \sin x (1 - \cos^2 x) \] Thus, we can rewrite the integral as: \[ \int \sin x (1 - \cos^2 x) \cos^3 x \, dx \] ### Step 2: Substitute \( t = \cos x \) Let \( t = \cos x \). Then, the derivative \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). Substituting these into the integral gives: \[ \int \sin x (1 - \cos^2 x) \cos^3 x \, dx = \int (1 - t^2) t^3 (-dt) \] This simplifies to: \[ -\int (1 - t^2) t^3 \, dt \] ### Step 3: Expand the integrand Now, we expand the integrand: \[ -\int (t^3 - t^5) \, dt \] ### Step 4: Integrate term by term Now we can integrate term by term: \[ -\left( \frac{t^4}{4} - \frac{t^6}{6} \right) + C \] This simplifies to: \[ -\frac{t^4}{4} + \frac{t^6}{6} + C \] ### Step 5: Substitute back for \( t \) Now, we substitute back \( t = \cos x \): \[ -\frac{\cos^4 x}{4} + \frac{\cos^6 x}{6} + C \] ### Final Answer Thus, the final answer is: \[ \int \sin^3 x \cos^3 x \, dx = \frac{\cos^6 x}{6} - \frac{\cos^4 x}{4} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int sin^(2//3) x cos^(3) x dx

int_(0)^(pi//2) sin ^(3) x cos^(3) x" "dx =

int ((sin ^ (2) x cos ^ (2) x) / (sin ^ (3) x + cos ^ (3) x)) dx =

int5sin^(3//2)x cos x dx=

int sin^2x cos^3x dx

int (sin ^ (3) x + cos ^ (3) x) / (sin ^ (2) x * cos ^ (2) x) dx

What is int_(0)^(pi//2) (sin^(3)x)/(sin^(3)x + cos^(3)x) dx ?

int(sin x)/(sin^(3)x+cos^(3)x)dx

Evaluate: (i) int(1)/(sin^(3)x cos^(5)x)dx (ii) int(1)/(sin^(3)x cos x)dx

int (sin ^ (2) x cos ^ (2) x) / ((sin ^ (5) x + cos ^ (3) x sin ^ (2) x + sin ^ (3) x cos ^ (2) x + cos ^ (5) x) ^ (2)) dx