Home
Class 12
MATHS
int (1-cos x)/(1+cos x) dx=?...

`int (1-cos x)/(1+cos x) dx=?`

A

`2 tan ((x)/(2))+ x+c`

B

` tan ((x)/(2)) + x+c`

C

`tan ((x)/(2)) + 2x + c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{1 - \cos x}{1 + \cos x} \, dx\), we can follow these steps: ### Step 1: Simplify the integrand We start by using the trigonometric identities for \(1 - \cos x\) and \(1 + \cos x\): \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integrand: \[ \frac{1 - \cos x}{1 + \cos x} = \frac{2 \sin^2\left(\frac{x}{2}\right)}{2 \cos^2\left(\frac{x}{2}\right)} = \frac{\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)} = \tan^2\left(\frac{x}{2}\right) \] ### Step 2: Rewrite the integral Now we can rewrite the integral: \[ \int \frac{1 - \cos x}{1 + \cos x} \, dx = \int \tan^2\left(\frac{x}{2}\right) \, dx \] ### Step 3: Use the identity for \(\tan^2\) We know that: \[ \tan^2\theta = \sec^2\theta - 1 \] So, we can rewrite the integral: \[ \int \tan^2\left(\frac{x}{2}\right) \, dx = \int \left(\sec^2\left(\frac{x}{2}\right) - 1\right) \, dx \] ### Step 4: Split the integral Now we can split the integral into two parts: \[ \int \tan^2\left(\frac{x}{2}\right) \, dx = \int \sec^2\left(\frac{x}{2}\right) \, dx - \int 1 \, dx \] ### Step 5: Integrate each part 1. The integral of \(\sec^2\left(\frac{x}{2}\right)\): \[ \int \sec^2\left(\frac{x}{2}\right) \, dx = 2 \tan\left(\frac{x}{2}\right) + C_1 \] (using the substitution \(u = \frac{x}{2}\), \(du = \frac{1}{2}dx\)) 2. The integral of \(1\): \[ \int 1 \, dx = x + C_2 \] ### Step 6: Combine the results Combining both results, we have: \[ \int \tan^2\left(\frac{x}{2}\right) \, dx = 2 \tan\left(\frac{x}{2}\right) - x + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{1 - \cos x}{1 + \cos x} \, dx = 2 \tan\left(\frac{x}{2}\right) - x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1+cos 2x)/(1-cos 2x)dx

Evaluate: int sqrt((1-cos x)/(1+cos x))dx

int ((1-cos2x))/((1+cos 2x)) dx = ?

Evaluate: (i) int sqrt((1+cos2x)/(1-cos2x))dx (ii) int sqrt((1-cos x)/(1+cos x))dx

int(cos x)/(1+cos x)dx

int(cos x)/(1-cos x)dx

int (cos x) / (1-sin x) dx

int(cos 2x)/(1+sin x cos x)dx

int(1+cos^(2)x)/(1-cos2x)dx=

int (1 + sin x) / (cos x) dx