Home
Class 12
MATHS
int (x^(2))/(x^(2) +4) dx=?...

`int (x^(2))/(x^(2) +4) dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2}{x^2 + 4} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand by adding and subtracting 4 in the numerator: \[ \frac{x^2}{x^2 + 4} = \frac{x^2 + 4 - 4}{x^2 + 4} = \frac{x^2 + 4}{x^2 + 4} - \frac{4}{x^2 + 4} \] This simplifies to: \[ 1 - \frac{4}{x^2 + 4} \] ### Step 2: Set up the integral Now we can rewrite the integral: \[ \int \frac{x^2}{x^2 + 4} \, dx = \int \left( 1 - \frac{4}{x^2 + 4} \right) \, dx \] ### Step 3: Split the integral We can split the integral into two parts: \[ \int \left( 1 - \frac{4}{x^2 + 4} \right) \, dx = \int 1 \, dx - 4 \int \frac{1}{x^2 + 4} \, dx \] ### Step 4: Integrate the first part The integral of 1 is straightforward: \[ \int 1 \, dx = x \] ### Step 5: Integrate the second part For the second integral, we recognize that \( x^2 + 4 \) can be rewritten as \( x^2 + 2^2 \). We can use the formula for the integral of \( \frac{1}{x^2 + a^2} \): \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] In our case, \( a = 2 \): \[ \int \frac{1}{x^2 + 4} \, dx = \frac{1}{2} \tan^{-1} \left( \frac{x}{2} \right) \] ### Step 6: Combine the results Now we combine the results from both integrals: \[ \int \frac{x^2}{x^2 + 4} \, dx = x - 4 \left( \frac{1}{2} \tan^{-1} \left( \frac{x}{2} \right) \right) + C \] This simplifies to: \[ x - 2 \tan^{-1} \left( \frac{x}{2} \right) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^2}{x^2 + 4} \, dx = x - 2 \tan^{-1} \left( \frac{x}{2} \right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(x^(2))/(x^(2)-4x+3)dx

int(x^(2))/(x^(2)-4x+3)dx

int(x^(2)-1)/(x^(2)+4)dx

int(x^(2))/(x^(2)-4^(2))dx

int (6x^(2)-(4)/(x^(2))) dx

int(x^(2)+2)/(x^(4)+4)dx=

Evaluate: int(x^(2)-1)/(x^(2)+4)dx

int(x^(2)dx)/(4+x^(2))dx

int(x^(2))/(4x^(2)-9)dx

int(x^(2))/(9+4x^(2))dx