Home
Class 12
MATHS
int(2)^(8) |x-5| dx=?...

`int_(2)^(8) |x-5| dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{2}^{8} |x-5| \, dx \), we will break it down into two parts based on the definition of the absolute value function. ### Step 1: Determine the points where the expression inside the absolute value changes sign. The expression \( |x-5| \) changes at \( x = 5 \). Therefore, we will split the integral at this point. ### Step 2: Rewrite the integral. We can express the integral as: \[ \int_{2}^{8} |x-5| \, dx = \int_{2}^{5} |x-5| \, dx + \int_{5}^{8} |x-5| \, dx \] ### Step 3: Evaluate the first integral \( \int_{2}^{5} |x-5| \, dx \). For \( x \) in the interval \([2, 5]\), \( x-5 \) is negative, so: \[ |x-5| = -(x-5) = 5-x \] Thus, we have: \[ \int_{2}^{5} |x-5| \, dx = \int_{2}^{5} (5-x) \, dx \] ### Step 4: Calculate the first integral. Now we compute: \[ \int (5-x) \, dx = 5x - \frac{x^2}{2} + C \] Evaluating from 2 to 5: \[ \left[ 5x - \frac{x^2}{2} \right]_{2}^{5} = \left( 5(5) - \frac{5^2}{2} \right) - \left( 5(2) - \frac{2^2}{2} \right) \] Calculating: \[ = \left( 25 - \frac{25}{2} \right) - \left( 10 - 2 \right) = \left( 25 - 12.5 \right) - 8 = 12.5 - 8 = 4.5 \] ### Step 5: Evaluate the second integral \( \int_{5}^{8} |x-5| \, dx \). For \( x \) in the interval \([5, 8]\), \( x-5 \) is non-negative, so: \[ |x-5| = x-5 \] Thus, we have: \[ \int_{5}^{8} |x-5| \, dx = \int_{5}^{8} (x-5) \, dx \] ### Step 6: Calculate the second integral. Now we compute: \[ \int (x-5) \, dx = \frac{x^2}{2} - 5x + C \] Evaluating from 5 to 8: \[ \left[ \frac{x^2}{2} - 5x \right]_{5}^{8} = \left( \frac{8^2}{2} - 5(8) \right) - \left( \frac{5^2}{2} - 5(5) \right) \] Calculating: \[ = \left( \frac{64}{2} - 40 \right) - \left( \frac{25}{2} - 25 \right) = (32 - 40) - \left( 12.5 - 25 \right) = -8 - (-12.5) = -8 + 12.5 = 4.5 \] ### Step 7: Combine the results. Now we combine the two parts: \[ \int_{2}^{8} |x-5| \, dx = \int_{2}^{5} |x-5| \, dx + \int_{5}^{8} |x-5| \, dx = 4.5 + 4.5 = 9 \] ### Final Answer: \[ \int_{2}^{8} |x-5| \, dx = 9 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(2)^(8)|x-5|dx

int_(0)^(8)|x-5|dx=17

int_(2)^(8)|(x-2)|dx

Evaluate : int_(0)^(8) |x-5|dx

Evaluate int_(2)^(8)|x-5|dx .

What is int_(2)^(8) |x-5|dx equal to ?

By using the properties of definite integrals, evaluate the integrals int_(2)^(8)|x-5|dx and int_(-5)^(5)|x+2|dx

int_(2rarr8)|x-5|dx

Evaluate int_(0)^(5)|x-2|dx

int_(-5)^(5)|x+2|dx