Home
Class 12
MATHS
int(0)^(1) x (1 -x)^(n) dx=?...

`int_(0)^(1) x (1 -x)^(n) dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} x (1 - x)^{n} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = 1 - x \). Then, we differentiate to find \( dx \): \[ dx = -dt \] Now, we need to change the limits of integration. When \( x = 0 \), \( t = 1 \), and when \( x = 1 \), \( t = 0 \). Thus, the integral becomes: \[ \int_{0}^{1} x (1 - x)^{n} \, dx = \int_{1}^{0} (1 - t) t^{n} (-dt) = \int_{0}^{1} (1 - t) t^{n} \, dt \] ### Step 2: Expand the integrand Now, we expand the integrand: \[ (1 - t) t^{n} = t^{n} - t^{n+1} \] So the integral can be rewritten as: \[ \int_{0}^{1} (t^{n} - t^{n+1}) \, dt \] ### Step 3: Integrate term by term Now we can integrate each term separately: \[ \int_{0}^{1} t^{n} \, dt - \int_{0}^{1} t^{n+1} \, dt \] Using the formula for the integral of \( t^{k} \): \[ \int t^{k} \, dt = \frac{t^{k+1}}{k+1} + C \] we find: \[ \int_{0}^{1} t^{n} \, dt = \frac{1^{n+1}}{n+1} - \frac{0^{n+1}}{n+1} = \frac{1}{n+1} \] and \[ \int_{0}^{1} t^{n+1} \, dt = \frac{1^{n+2}}{n+2} - \frac{0^{n+2}}{n+2} = \frac{1}{n+2} \] ### Step 4: Combine the results Now substituting back into our expression: \[ \int_{0}^{1} (t^{n} - t^{n+1}) \, dt = \frac{1}{n+1} - \frac{1}{n+2} \] ### Step 5: Simplify the expression To simplify \( \frac{1}{n+1} - \frac{1}{n+2} \), we find a common denominator: \[ \frac{(n+2) - (n+1)}{(n+1)(n+2)} = \frac{1}{(n+1)(n+2)} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{1} x (1 - x)^{n} \, dx = \frac{1}{(n+1)(n+2)} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x dx

If m, n in N , then l_(m n) = int_(0)^(1) x^(m) (1-x)^(n) dx is equal to

int_(0)^(1)(1-x^(3))^(n)dx=

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

Statement-1: (C_(0))/(2.3)- (C_(1))/(3.4) +(C_(2))/(4.5)-.............+............+(-1)^(n) (C_(n))/((n+2)(n+3))= (1)/((n+1)(n+2)) Statement-2: (C_(0))/(k)- (C_(1))/(k+1) +(C_(2))/(k+3)+............+(-1)^(n) (C_(n))/(k+n)=int_(0)^(1)x^(k-1) (1 - x)^(n) dx

int_(0)^(a) x (1-x)^(5)dx=........

int_(0)^(1)x e^(x)dx=

U_(n)=int_(0)^(1)x^(n)(2-x)^(n)dx and V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dx,n in N and if (V_(n))/(U_(n))=1024, then the value of n is