Home
Class 12
MATHS
int(0)^(1) (x)/(sqrt(1+x^(2)))dx=?...

`int_(0)^(1) (x)/(sqrt(1+x^(2)))dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} \frac{x}{\sqrt{1+x^2}} \, dx \), we will use a substitution method. ### Step-by-Step Solution: 1. **Substitution**: Let \( t = 1 + x^2 \). Then, we differentiate both sides with respect to \( x \): \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] 2. **Change of Variables**: We also need to express \( x \) in terms of \( t \): \[ x^2 = t - 1 \quad \Rightarrow \quad x = \sqrt{t - 1} \] Now, we need to change the limits of integration. When \( x = 0 \): \[ t = 1 + 0^2 = 1 \] When \( x = 1 \): \[ t = 1 + 1^2 = 2 \] Therefore, the limits change from \( x: 0 \to 1 \) to \( t: 1 \to 2 \). 3. **Substituting in the Integral**: Substitute \( x \) and \( dx \) into the integral: \[ \int_{0}^{1} \frac{x}{\sqrt{1+x^2}} \, dx = \int_{1}^{2} \frac{\sqrt{t-1}}{\sqrt{t}} \cdot \frac{dt}{2\sqrt{t-1}} = \int_{1}^{2} \frac{1}{2\sqrt{t}} \, dt \] 4. **Simplifying the Integral**: The integral simplifies to: \[ \frac{1}{2} \int_{1}^{2} t^{-1/2} \, dt \] 5. **Integrating**: The integral of \( t^{-1/2} \) is: \[ \int t^{-1/2} \, dt = 2t^{1/2} + C \] Therefore, \[ \frac{1}{2} \left[ 2t^{1/2} \right]_{1}^{2} = \left[ t^{1/2} \right]_{1}^{2} \] 6. **Evaluating the Limits**: Now we evaluate the limits: \[ = \sqrt{2} - \sqrt{1} = \sqrt{2} - 1 \] ### Final Answer: Thus, the value of the integral is: \[ \int_{0}^{1} \frac{x}{\sqrt{1+x^2}} \, dx = \sqrt{2} - 1 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7q|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

int_(0)^(1)(dx)/(sqrt(1-x^(2)))

int_(0)^(1)(dx)/(sqrt(1-x^(2)))

int_(0)^(1)(dx)/(sqrt((1-x^(2))))

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

Evaluate : int_(0)^(1) (-1)/(sqrt(1-x^(2)) )dx

Evaluate int_(0)^(1)(ln x)/(sqrt(1-x^(2)))dx

int_(0)^(1)(dx)/(sqrt(x^(2)-x+1))

int_(0)^(1)(dx)/(sqrt(x^(2)-x+1))

int_(0)^(1)dx/(sqrt(1-x^2)