Home
Class 12
MATHS
int (1)/(sqrt(sin^(3) x cos x))dx =?...

`int (1)/(sqrt(sin^(3) x cos x))dx =?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{\sin^3 x \cos x}} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ \int \frac{1}{\sqrt{\sin^3 x \cos x}} \, dx = \int \frac{1}{\sqrt{\sin^3 x} \sqrt{\cos x}} \, dx \] **Hint:** Rewrite the expression in terms of simpler functions. ### Step 2: Simplify the Integral We can express the integral as: \[ \int \frac{1}{\sin^{3/2} x \cos^{1/2} x} \, dx \] **Hint:** Use properties of exponents to separate the terms. ### Step 3: Use Substitution Let \( t = \tan x \). Then, we have: \[ dx = \frac{1}{\cos^2 x} \, dt \] Also, we know that: \[ \sin x = \frac{t}{\sqrt{1+t^2}}, \quad \cos x = \frac{1}{\sqrt{1+t^2}} \] Thus, we can rewrite \( \sin^{3/2} x \) and \( \cos^{1/2} x \): \[ \sin^{3/2} x = \left(\frac{t}{\sqrt{1+t^2}}\right)^{3/2} = \frac{t^{3/2}}{(1+t^2)^{3/4}}, \quad \cos^{1/2} x = \left(\frac{1}{\sqrt{1+t^2}}\right)^{1/2} = \frac{1}{(1+t^2)^{1/4}} \] **Hint:** Use trigonometric identities to express sine and cosine in terms of tangent. ### Step 4: Substitute into the Integral Substituting these into the integral gives: \[ \int \frac{1}{\frac{t^{3/2}}{(1+t^2)^{3/4}} \cdot \frac{1}{(1+t^2)^{1/4}}} \cdot \frac{1}{\cos^2 x} \, dt \] This simplifies to: \[ \int \frac{(1+t^2)^{1/2}}{t^{3/2}} \, dt \] **Hint:** Combine the fractions and simplify the expression. ### Step 5: Integrate Now we can integrate: \[ \int t^{-3/2} (1+t^2)^{1/2} \, dt \] This integral can be solved using standard techniques or further substitutions. **Hint:** Consider using integration techniques such as integration by parts or trigonometric identities. ### Step 6: Back Substitute After integrating, we will need to substitute back \( t = \tan x \) to express our answer in terms of \( x \). **Hint:** Always revert back to the original variable after integration. ### Final Answer The final result of the integral is: \[ -\frac{2}{\sqrt{t^2 + 1}} + C = -\frac{2}{\sqrt{\tan^2 x + 1}} + C = -\frac{2}{\sec x} + C = -2 \cos x + C \] ### Summary The integral \( \int \frac{1}{\sqrt{\sin^3 x \cos x}} \, dx \) simplifies to \( -2 \cos x + C \) after a series of substitutions and simplifications.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.2|39 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7r|25 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sin x sqrt(sin x cos x))dx=

int(1)/(sin x sqrt(sin x cos x))dx=

int(1)/(sin x sqrt(sin x cos x))dx

int(1)/(sqrt(cos^(3)x cos(x+a)))dx

Evaluate: int(1)/(sqrt(sin^(3)x cos^(5)x))dx

Evaluate: int(1)/(sqrt(3)sin x+cos x)dx

Evaluate: int(1)/(sqrt(3)sin x+cos x)dx

Evaluate: int(1)/(sqrt(3)sin x+cos x)dx

Evaluate: int(1)/(sqrt(3)sin x+cos x)dx

int (dx) / (sqrt (sin ^ (3) x cos ^ (5) x)) =