Home
Class 12
MATHS
int (1-sinx )/ (1-cos x) dx=?...

`int (1-sinx )/ (1-cos x) dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 - \sin x}{1 - \cos x} \, dx \), we can break it down into simpler parts. Here’s the step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1 - \sin x}{1 - \cos x} \, dx \] We can separate the fraction: \[ \int \left( \frac{1}{1 - \cos x} - \frac{\sin x}{1 - \cos x} \right) \, dx \] ### Step 2: Solve the First Integral Now, we will integrate the first part: \[ \int \frac{1}{1 - \cos x} \, dx \] We can use the identity \( 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \): \[ \int \frac{1}{2 \sin^2\left(\frac{x}{2}\right)} \, dx = \frac{1}{2} \int \csc^2\left(\frac{x}{2}\right) \, dx \] The integral of \( \csc^2 u \) is \( -\cot u \): \[ = -\cot\left(\frac{x}{2}\right) + C_1 \] ### Step 3: Solve the Second Integral Next, we integrate the second part: \[ -\int \frac{\sin x}{1 - \cos x} \, dx \] Using the substitution \( t = 1 - \cos x \), we have \( dt = \sin x \, dx \). Thus, the integral becomes: \[ -\int \frac{1}{t} \, dt = -\log |t| + C_2 = -\log |1 - \cos x| + C_2 \] ### Step 4: Combine the Results Now, we combine both parts: \[ \int \frac{1 - \sin x}{1 - \cos x} \, dx = -\cot\left(\frac{x}{2}\right) - \log |1 - \cos x| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{1 - \sin x}{1 - \cos x} \, dx = -\cot\left(\frac{x}{2}\right) - \log |1 - \cos x| + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.2|39 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7r|25 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int (1-sinx )/(x+cos x) dx

int (sinx)/(1-cos x)dx

Knowledge Check

  • int ((1- sinx))/(cos^(2)x) dx= ?

    A
    `tanx +sec x + C`
    B
    `tanx - sec x + C`
    C
    `-tanx + sec x + C`
    D
    `-tanx - sec x + C`
  • int(cos^(2)x)/(1+sinx)dx+int(sin^(2)x)/(1-cosx)dx=

    A
    `2x+sinx-cosx+c`
    B
    `2x-sinx+cosx+c`
    C
    `2x+sinx+cosx+c`
    D
    `x+sinx+cosx+c`
  • Similar Questions

    Explore conceptually related problems

    inte^(x)(1-sinx)/(1-cosx)dx=

    int (2 - sinx)/(2 cos x ) dx

    int(sinx)/((1+cos x)^(2))dx=

    Integrate : int (1-sinx)/(cos^2x)dx.

    int((x-sinx)/(1+cosx))dx

    Evaluate : int((x-sinx)/(1-cosx))dx .