Home
Class 12
MATHS
(sin^(-1)x)/(sqrt(1-x^(2))...

`(sin^(-1)x)/(sqrt(1-x^(2))`

Text Solution

AI Generated Solution

To solve the integral \(\int \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \, dx\), we will follow these steps: ### Step 1: Substitution Let \( t = \sin^{-1} x \). Then, we differentiate both sides to find \( dx \): \[ \frac{dt}{dx} = \frac{1}{\sqrt{1 - x^2}} \implies dx = \sqrt{1 - x^2} \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.3|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.4|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.1|22 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int e^(x)(sqrt(1-x^(2))sin^(-1)x+1)/(sqrt(1-x^(2)))dx

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=

int e^(x)(sin^(-1)x+(1)/(sqrt(1-x^(2))))dx

inte^(x){sin^(-1)x+(1)/(sqrt(1-x^(2)))}dx=?

Evaluate the following integrals: int(e^(x)[sqrt(1-x^(2))sin^(-1)x+1])/(sqrt(1-x^(2)))dx

sin h^(-1)((x)/(sqrt(1-x^(2))))=

Prove that (d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

int_0^(1/2) e^(sin^-1x)/sqrt(1-x^2)dx

sin^(-1)x+sin^(-1)sqrt(1-x^(2))