Home
Class 9
MATHS
If log(10)3= 0.4771 and log(10)2= 0.3010...

If `log_(10)3= 0.4771 and log_(10)2= 0.3010` find the value of `log_(10)48`

Text Solution

Verified by Experts

`log_(10)48 = log_(10)16 + log_(10)3`
`log_(10)24 = log_(10)3 = 4log_(10)2 + log_(10)3`
4(0.3010)+ 0.4771 = 1.6811.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    PEARSON IIT JEE FOUNDATION|Exercise very short answer|30 Videos
  • LOGARITHMS

    PEARSON IIT JEE FOUNDATION|Exercise short answer type questions|15 Videos
  • LOCUS

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|15 Videos
  • MATRICES

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|20 Videos

Similar Questions

Explore conceptually related problems

If log_(10)2=0.30103, find the value of log_(10)50.

If log_(10)2=0.3010 , then the value of log_(10)80 is

If log _(10)2=0.3010 and log_(10)3=0.4771 ,find the value of log_(10)(2.25)

If log_(10) 3=1.4771 and log_(10) 7=0.8451, then the value of log_(10)(23 1/3) is equal to a. 0. 368 b. 1. 368 c. 1. 356 d. 1. 477

If log_(10)2 = 0.3010 and log_(10)3 = 0.4771 , then find the value log_(10) 135 .

If log_(10) 2 = 0.3010 & log_(10) 3 = 0.4771 , find the value of log _(10) (2.25) .

If log_(10) 4 = 0.6021 and log_(10)5 = 0.6990, then find the value of log_(10) 1600.

If log_(10)2= 0.3010 and log_(10)3= 0.4771 , then the value of log_(10)((2^(3) xx 3^(2))/(5^(2))) is