Home
Class 9
MATHS
if x^(2) + y^(2) = z^(2) then prove that...

`if x^(2) + y^(2) = z^(2)` then prove that `log_(y)(z+x) + log_(y) (z-x)=2`

Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    PEARSON IIT JEE FOUNDATION|Exercise Essay type Questions.|5 Videos
  • LOGARITHMS

    PEARSON IIT JEE FOUNDATION|Exercise level1|28 Videos
  • LOGARITHMS

    PEARSON IIT JEE FOUNDATION|Exercise very short answer|30 Videos
  • LOCUS

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|15 Videos
  • MATRICES

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|20 Videos

Similar Questions

Explore conceptually related problems

if x^(4) -y^(4)-x^(2)y^(2)-2xy^(3)= z^(6) then prove that log_(z)(x^(2) -y^(2)-xy) + log_(z) (x^(2) +y^(2) +xy) =6

if x^(2) + y^(2) =z^(2) , "then" 1/(log_(z+x)y) + 1/(log_(z-x)y) = _______

a=y^(2),b=z^(2),c=x^(2) then prove that log_(a)x^(3)*log_(b)y^(3)*log_(c)z^(3)=(27)/(8)

If x^(18)=y^(21)=z^(28) , then 3,3 log_(y)x,3log_(z)y,7log_(x)z are in

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

log_(z^(2)( x^(2)y^(2)) =?

log_(x)x xx log_(y)y xx log_(z)z = ______

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3