Home
Class 9
MATHS
Find the value of 4(sin^(4)30^(@)+cos^(4...

Find the value of `4(sin^(4)30^(@)+cos^(4)30^(@))-3(cos^(2)45^(@)+sin^(2)90^(@))`.

A

`-(1)/(2)`

B

`-2`

C

`2`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 4(\sin^4 30^\circ + \cos^4 30^\circ) - 3(\cos^2 45^\circ + \sin^2 90^\circ) \), we will follow these steps: ### Step 1: Find the values of the trigonometric functions. - We know: - \( \sin 30^\circ = \frac{1}{2} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) - \( \cos 45^\circ = \frac{1}{\sqrt{2}} \) - \( \sin 90^\circ = 1 \) ### Step 2: Calculate \( \sin^4 30^\circ \) and \( \cos^4 30^\circ \). - \( \sin^4 30^\circ = \left(\frac{1}{2}\right)^4 = \frac{1}{16} \) - \( \cos^4 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^4 = \frac{3^2}{2^4} = \frac{9}{16} \) ### Step 3: Substitute these values into the expression. - Now, we substitute these values into the expression: \[ 4\left(\frac{1}{16} + \frac{9}{16}\right) - 3(\cos^2 45^\circ + \sin^2 90^\circ) \] ### Step 4: Simplify the expression inside the brackets. - Inside the brackets: \[ \frac{1}{16} + \frac{9}{16} = \frac{10}{16} = \frac{5}{8} \] - Thus, we have: \[ 4\left(\frac{5}{8}\right) - 3(\cos^2 45^\circ + \sin^2 90^\circ) \] ### Step 5: Calculate \( \cos^2 45^\circ \) and \( \sin^2 90^\circ \). - \( \cos^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \) - \( \sin^2 90^\circ = 1^2 = 1 \) ### Step 6: Substitute these values into the expression. - Now substitute: \[ 4\left(\frac{5}{8}\right) - 3\left(\frac{1}{2} + 1\right) \] ### Step 7: Simplify the expression. - First, calculate \( \frac{1}{2} + 1 = \frac{1}{2} + \frac{2}{2} = \frac{3}{2} \). - Now substitute: \[ 4\left(\frac{5}{8}\right) - 3\left(\frac{3}{2}\right) \] - Calculate \( 4 \times \frac{5}{8} = \frac{20}{8} = \frac{5}{2} \). - Calculate \( 3 \times \frac{3}{2} = \frac{9}{2} \). ### Step 8: Final calculation. - Now we have: \[ \frac{5}{2} - \frac{9}{2} = \frac{5 - 9}{2} = \frac{-4}{2} = -2 \] ### Final Answer: The value of the expression is \( -2 \). ---

To solve the expression \( 4(\sin^4 30^\circ + \cos^4 30^\circ) - 3(\cos^2 45^\circ + \sin^2 90^\circ) \), we will follow these steps: ### Step 1: Find the values of the trigonometric functions. - We know: - \( \sin 30^\circ = \frac{1}{2} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) - \( \cos 45^\circ = \frac{1}{\sqrt{2}} \) - \( \sin 90^\circ = 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 2|20 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|15 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Easy Type Questions|5 Videos
  • STATISTICS

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL-3|19 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (sin^(4) 60^(@) + sec^(4)30^(@)) - 2(cos^(2)45^(@) - sin^(2) 90^(@))

Evaluate: (sin^(4) 60^(@) + sec^(4) 30^(@)) - 2 (cos^(2) 45^(@) - sin^(2) 90^(@))

The value of sin^(2)30^(@)cos^(2)45^(@)

Find the value of 2sin30^(@)cos30^(@) .

What is the value of 4(sin^4 30^@ + cos^4 60^@) -3(cos^2 45^@ - sin^2 90^@) ?

Find the value of sin^(2)30^(@)+cos^(2)60^(@)+tan45^(@) .

Find the value of sin ^2 30^@ +cos^@ 45^@ .

Find the value of sin60^(@)cos30^(@)+cos60^(@)sin30^(@) .

find the value of sin60^(@)cos30^(@)+sin30^(@)cos60^(@)

PEARSON IIT JEE FOUNDATION-TRIGONOMETRY -Level 1
  1. The value of (3 pi^( c))/(5) in sexagesimal measure is

    Text Solution

    |

  2. The value of log(sec theta ) (1- sin^(2) theta ) is

    Text Solution

    |

  3. If sinA=(sqrt(3))/(2) and A is an acute angle, then find the value of...

    Text Solution

    |

  4. The length of an arc, which subtends an angle of 30^(@) at the centre ...

    Text Solution

    |

  5. If sin^(4) theta+cos^(4)theta=(1)/(2), then find sin theta cos theta .

    Text Solution

    |

  6. If sin theta=(a)/(b) , then cos theta and tan theta in term of a and...

    Text Solution

    |

  7. The distance covered by the tip of a minute hand in 35 minutes is 33 c...

    Text Solution

    |

  8. If sin alpha=(4)/(5), where (0^(@) le alpha le 90^(@)), then find sin ...

    Text Solution

    |

  9. In a DeltaABC, cos((A+B)/(2))=

    Text Solution

    |

  10. sin^(4) theta - cos^(4) theta=

    Text Solution

    |

  11. If P:Q= tan 2A: cos A and Q: R= cos 2A: sin 2A, then P:R is

    Text Solution

    |

  12. If A=sin theta+ cos theta and B=sin theta - cos theta, then which of t...

    Text Solution

    |

  13. If cot(A-B)=1 and cos (A+B)=(1)/(2), then find B

    Text Solution

    |

  14. Find the measure of angle A, if (2 sin A +1)(2 sin A-1)=0

    Text Solution

    |

  15. The value of cos 2 theta in terms of cot theta is

    Text Solution

    |

  16. The simplified value of sin^(4)alpha+cos^(4)alpha+(1)/(2) sin^(2) 2 al...

    Text Solution

    |

  17. sqrt(((1+sin2theta))/(1-cos^(2)theta))["where" theta in [0,(pi)/(4)]]=

    Text Solution

    |

  18. If A and B are complementary angles, then the value of (sin^(2)A + sin...

    Text Solution

    |

  19. Find the value of 4(sin^(4)30^(@)+cos^(4)30^(@))-3(cos^(2)45^(@)+sin^(...

    Text Solution

    |

  20. If sec theta + tan theta=(4)/(3), then sec theta tan theta =

    Text Solution

    |