Home
Class 9
MATHS
If sec theta + tan theta=(4)/(3), then ...

If `sec theta + tan theta=(4)/(3)`, then ` sec theta tan theta `=_______

A

`(175)/(24)`

B

`(25)/(576)`

C

`(27)/(576)`

D

`(175)/(576)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sec \theta + \tan \theta = \frac{4}{3} \) and we need to find \( \sec \theta \tan \theta \), we can follow these steps: ### Step 1: Use the identity We know the identity: \[ \sec^2 \theta - \tan^2 \theta = 1 \] This can be factored as: \[ (\sec \theta + \tan \theta)(\sec \theta - \tan \theta) = 1 \] ### Step 2: Substitute the known value We substitute \( \sec \theta + \tan \theta = \frac{4}{3} \) into the identity: \[ \left(\frac{4}{3}\right)(\sec \theta - \tan \theta) = 1 \] ### Step 3: Solve for \( \sec \theta - \tan \theta \) To find \( \sec \theta - \tan \theta \), we rearrange the equation: \[ \sec \theta - \tan \theta = \frac{1}{\frac{4}{3}} = \frac{3}{4} \] ### Step 4: Set up the equations Now we have two equations: 1. \( \sec \theta + \tan \theta = \frac{4}{3} \) (Equation 1) 2. \( \sec \theta - \tan \theta = \frac{3}{4} \) (Equation 2) ### Step 5: Add the equations Adding Equation 1 and Equation 2: \[ (\sec \theta + \tan \theta) + (\sec \theta - \tan \theta) = \frac{4}{3} + \frac{3}{4} \] This simplifies to: \[ 2 \sec \theta = \frac{4}{3} + \frac{3}{4} \] ### Step 6: Find a common denominator and simplify The common denominator for \( \frac{4}{3} \) and \( \frac{3}{4} \) is 12: \[ \frac{4}{3} = \frac{16}{12}, \quad \frac{3}{4} = \frac{9}{12} \] Thus: \[ 2 \sec \theta = \frac{16}{12} + \frac{9}{12} = \frac{25}{12} \] So: \[ \sec \theta = \frac{25}{24} \] ### Step 7: Subtract the equations Now we subtract Equation 2 from Equation 1: \[ (\sec \theta + \tan \theta) - (\sec \theta - \tan \theta) = \frac{4}{3} - \frac{3}{4} \] This simplifies to: \[ 2 \tan \theta = \frac{4}{3} - \frac{3}{4} \] ### Step 8: Find a common denominator and simplify Using the common denominator of 12 again: \[ \frac{4}{3} = \frac{16}{12}, \quad \frac{3}{4} = \frac{9}{12} \] Thus: \[ 2 \tan \theta = \frac{16}{12} - \frac{9}{12} = \frac{7}{12} \] So: \[ \tan \theta = \frac{7}{24} \] ### Step 9: Calculate \( \sec \theta \tan \theta \) Now we can find \( \sec \theta \tan \theta \): \[ \sec \theta \tan \theta = \left(\frac{25}{24}\right) \left(\frac{7}{24}\right) = \frac{175}{576} \] ### Final Answer Thus, the value of \( \sec \theta \tan \theta \) is: \[ \sec \theta \tan \theta = \frac{175}{576} \]

To solve the problem where \( \sec \theta + \tan \theta = \frac{4}{3} \) and we need to find \( \sec \theta \tan \theta \), we can follow these steps: ### Step 1: Use the identity We know the identity: \[ \sec^2 \theta - \tan^2 \theta = 1 \] This can be factored as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 2|20 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|15 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Easy Type Questions|5 Videos
  • STATISTICS

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL-3|19 Videos

Similar Questions

Explore conceptually related problems

If sec theta + tan theta = 4 , then sec theta- tan theta =?

If sec theta + tan theta = 12.5 , then sec theta - tan theta = ?

If tan theta+sec theta=(2)/(3) then sec theta

If sec theta+tan theta=2 , then sec theta-tan theta = ?

Prove that: 1/(sec theta - tan theta) = sec theta + tan theta .

tan theta+(1)/(tan theta)=sec theta cosec theta

Prove that (1)/(sec theta - tan theta) = sec theta + tan theta

If tan theta + sec theta = n, then sec ^(4) theta - tan ^(4) theta- 2 sec theta tan theta =

The value of log[(sec theta+tan theta)(sec theta-tan theta)] is ________

PEARSON IIT JEE FOUNDATION-TRIGONOMETRY -Level 1
  1. The value of (3 pi^( c))/(5) in sexagesimal measure is

    Text Solution

    |

  2. The value of log(sec theta ) (1- sin^(2) theta ) is

    Text Solution

    |

  3. If sinA=(sqrt(3))/(2) and A is an acute angle, then find the value of...

    Text Solution

    |

  4. The length of an arc, which subtends an angle of 30^(@) at the centre ...

    Text Solution

    |

  5. If sin^(4) theta+cos^(4)theta=(1)/(2), then find sin theta cos theta .

    Text Solution

    |

  6. If sin theta=(a)/(b) , then cos theta and tan theta in term of a and...

    Text Solution

    |

  7. The distance covered by the tip of a minute hand in 35 minutes is 33 c...

    Text Solution

    |

  8. If sin alpha=(4)/(5), where (0^(@) le alpha le 90^(@)), then find sin ...

    Text Solution

    |

  9. In a DeltaABC, cos((A+B)/(2))=

    Text Solution

    |

  10. sin^(4) theta - cos^(4) theta=

    Text Solution

    |

  11. If P:Q= tan 2A: cos A and Q: R= cos 2A: sin 2A, then P:R is

    Text Solution

    |

  12. If A=sin theta+ cos theta and B=sin theta - cos theta, then which of t...

    Text Solution

    |

  13. If cot(A-B)=1 and cos (A+B)=(1)/(2), then find B

    Text Solution

    |

  14. Find the measure of angle A, if (2 sin A +1)(2 sin A-1)=0

    Text Solution

    |

  15. The value of cos 2 theta in terms of cot theta is

    Text Solution

    |

  16. The simplified value of sin^(4)alpha+cos^(4)alpha+(1)/(2) sin^(2) 2 al...

    Text Solution

    |

  17. sqrt(((1+sin2theta))/(1-cos^(2)theta))["where" theta in [0,(pi)/(4)]]=

    Text Solution

    |

  18. If A and B are complementary angles, then the value of (sin^(2)A + sin...

    Text Solution

    |

  19. Find the value of 4(sin^(4)30^(@)+cos^(4)30^(@))-3(cos^(2)45^(@)+sin^(...

    Text Solution

    |

  20. If sec theta + tan theta=(4)/(3), then sec theta tan theta =

    Text Solution

    |