Home
Class 12
MATHS
int0^(pi/2)x^2sinx dx...

`int_0^(pi/2)x^2sinx dx`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 7.10|9 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 7.11|17 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 7.8|6 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Determine a positive integer n such that int_0^(pi/2)x^nsinx dx=3/4(pi^2-8)

int_0^1(tan^(-1)x)/x dx is equals to int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

IfI_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)d ,a n dI_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

Evaluate: int_0^(pi/2)xcotx dx

Evaluate: int_0^(pi/2)|sinx-cosx|dx

Evaluate : int_0^(pi/2) (sinx+cosx) dx

Prove that int_(0)^1 ((tan^(-1)x)/x) dx=1/2int_(0)^((pi)/2)x/(sinx)dx .