Home
Class 12
MATHS
From the first fundamental principle of ...

From the first fundamental principle of integral calculs, we get `f'(x)xsinx`
Using proper substitution, evaluate
`int_(0)^((pi)/(6))(1-cos3theta)sin3thetad theta`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 7.11|17 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise NCERT MISCELLANEOUS EXERCIES|44 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 7.9|12 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

From the first fundamental principle of integral calculs, we get f'(x)xsinx Evaluate int_(1)^((pi)/(2))sqrt(cosx).sin^(3)xdx

The value of int_(0)^((pi)/(6)) cos ^(3) 3x dx

Evaluate int_(0)^(pi//6) cos^(7) 3x dx

Evaluate int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx

Evaluate int_(0)^((pi)/(2))(3sin^3x+4cos^4x)dx .

Evaluate int_(0)^((pi)/(2))(cos theta d theta)/((sin theta +2)(sin theta +3)) .

Evaluate int_(0)^((pi)/(2))|(cos^(5)x,2),(sin^(7)x,3)|dx .

Evaluate the following : int_(0)^((pi)/(2)) sin^(3) theta cos^(5) theta d theta

Evaluate int_(0)^((pi)/(2))(sin^3x)/(sin^3 x+cos^3 x)dx .