Home
Class 12
MATHS
From the first fundamental principle of ...

From the first fundamental principle of integral calculs, we get `f'(x)xsinx`
Evaluate `int_(1)^((pi)/(2))sqrt(cosx).sin^(3)xdx`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 7.11|17 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise NCERT MISCELLANEOUS EXERCIES|44 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 7.9|12 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

From the first fundamental principle of integral calculs, we get f'(x)xsinx Using proper substitution, evaluate int_(0)^((pi)/(6))(1-cos3theta)sin3thetad theta

Evaluate int_(0)^((pi)/(2))sqrt(1+sin 2x) dx .

Evaluate: int_(-pi/2)^(pi/2)sqrt(cosx-cos^3x dx)

Evaluate int_(0)^((pi)/(4))sin^(2)2xdx

Evaluate int_(0)^((pi)/(2))sin^4 x cos^2xdx .

Evaluate int_(0)^((pi)/(2))sin^5 x cos^4 xdx.

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

Evaluate int_(2)^(3)(xdx)/(x^(2)+1)

Evaluate int_(0)^((pi)/2)(sin^(n)xdx)/(sin^(n)x+cos^(n)x)

Evaluate : int_(0)^(2pi)(cosx)/(sqrt(4+3 sin x))dx