Home
Class 12
MATHS
Let A(1, 2, 4) and B(2, -1, 3) be two po...

Let A(1, 2, 4) and B(2, -1, 3) be two points.
(i) Find `vec (AB`)
(ii) Find a unit vector along `vec(AB)`

Text Solution

Verified by Experts

The correct Answer is:
(i)` hat i - 3 hat j - hat k`
(ii)` 1/(sqrt11)( hat i - 3 hat j - hat k)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1|4 Videos
  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1 (Answer the following as true or false )|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|134 Videos

Similar Questions

Explore conceptually related problems

Let veca = hat i + hat j + hat k, vec b = 2 hat i + 3 hat j vec c = 3 hat i + 5 hat j - 2 hat k , vec d = - hat j + hat k (i) Find vec b - vec a . (ii) Find the unit vector along vec b - vec a . (iii) Prove that vec b - vec a and vec d - vec c are parallel vectors.

Let A(2,3, 4) B(4, 3, 2), C(5, 2,-1) be three points (i) Find AB and BC. (ii) Find the area of DeltaABC

Consider the triangle ABC with vertices A(1,2,3) , B(-1, 0, 4) and C(0, 1, 2) (a) Find vec (AB) and vec (AC) Find angle A . (c) Find the area of triangle ABC.

Consider the triangle ABC with vertices A(1, 1, 1) B(1, 2, 3) and C(2, 3, 1). (a) Find vec(AB) and vec(AC) Find vec (AB) xx vec (AC) (c) Hence find the area of the triangle ABC.

If veca = hat i - hat j + hat k, vec b = 2 hat i + hat j + 3 hat k , then (i) Find vec a + vec b , vec a - vec b and vec a. vec b . (ii) Find (vec a + vec b) xx (vec a - vec b) . (iii) Find a unit vector perpendicular to both vec a + vec b and vec a - vec b .

Consider the points A(1, 2, 3), B(4, 0, 4) and C(-2, 4, 2). (a). Find vec(AB) and vec(BC) (b) Show that the points A, B, C are collinear.

Consider the vectors vec a = 2 hat i + 2 hat j - 5 hat k and vec b= -hat i + 7 hat k (a).Find vec a + vec b . (b) Find a unit vector in the direction of vec a + vec b .

Consider the 4 points A(3, 2, 1) B(4, x, 5) C(4, 2, -2) and D(6, 5, -1) (i) Find vec(AB) , vec (AC) and vec(AD) . (ii) If the points A, B, C and D are coplanar, find the value of x.

Consider the vectors veca = hat i + 3 hat j + hat k and vec b = 2 hat i - hat j - hat k . (i) Find vec a.vec b (ii) Find the angle between vec a and vec b .

If the points A and B are (1, 2, -1) and (2, 1, -1) respectively then vec(AB) is