Home
Class 12
MATHS
Show the points A(3^i-2^j+^k) ,B(^i-3^j+...

Show the points A(3^i-2^j+^k) ,B(^i-3^j+5^k ) and C(2^i+^j-4^k) are the vectors of a right angled triangle.

Text Solution

Verified by Experts

The correct Answer is:
`|vec(AB)|^(2) = |vec(BC)|^(2) + |vec(CA)|^(2)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1|4 Videos
  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1 (Answer the following as true or false )|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|134 Videos

Similar Questions

Explore conceptually related problems

Show that the points A, B, C with position vector 2hat(i)-hat(j)+hat(k),hat(i)-3hat(j)-5hat(k)and3hat(i)-4hat(j)+4hat(k) respectively are the vector of a right angled triangle. Also, find the remaining angles of the triangle.

Show that the vectors 2 hat i - hat j + hat k , hat i - 3 hat j - 5hat k and 3hat i - 4 hat j - 4 hat k from the vertices of a right angled triangle.

show that the vectors 3 hat(i)- 2hat(j)+ hat(k), hat(i)-3hat(j)+5hat(k) and 2hat(i)+ hat(j)- 4 hat(k) form a right angled triangle

Show that the points A, B and C with position vectors vec a = 3 hat i - 4 hat j - 4 hat k , vec b = 2 hat i - hat j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively form the vertices of a right angled triangle.

The position vectors of the vertices of DeltaABC are 3 hat i - 4 hat j - 4 hat k , 2 hat i - hat j + hat k and hat i - 3 hat j - 5 hat k respectively. (i) Find vec (AB), vec(BC) and vec(CA) . (ii) Prove that DeltaABC is a right angled triangle. (iii) Find the unit vector perpendicular to both vec (AB) and vec(BC) .

Show that the vectors 2hat(i)-hat(j)+hat(k),3hat(i)-4hat(j)-4hat(k), hat(i)-3hat(j)-5hat(k) form a right angled triangle.

If the position vectors of P and Q are i + 3j - 7k and 5i - 2j + 4k then the cosine of the angle between PQ and y - axis is

Show that the points A(-2 hat i + 3 hat j + 5 hat k) , B( hat i + 2 hat j + 3 hat k ) and C( 7 hat i - hat k ) are collinear.

Vectors vec a= hat i+2 hat j+3 hat k , vec b=2 hat i- hat j+ hat k and vec c=3 hat i+ hat j+4 hat k , are so placed that the end point of one vector is the starting point of the next vector. Then the vector are (A) not coplanar (B) coplanar but cannot form a triangle (C) coplanar and form a triangle (D) coplanar and can form a right angled triangle

The unit vector which is orthogonal to the vector 5 hat j+2 hat j+6 hat k and is coplanar with vectors 2 hat i+ hat j+ hat ka n d hat i- hat j+ hat k is (2 hat i-6 hat j+ hat k)/(sqrt(41)) b. (2 hat i-3 hat j)/(sqrt(13)) c. (3 hat i- hat k)/(sqrt(10)) d. (4 hat i+3 hat j-3 hat k)/(sqrt(34))