Home
Class 12
MATHS
For any two vectors veca and vec b show ...

For any two vectors `veca` and `vec b` show that `|vec a. vec b| le |vec a||vec b|`.

Text Solution

Verified by Experts

The correct Answer is:
For any two vectors `vec a` and `vec b`, `|vec a. Vec b| le |vec a||vec b|`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1|4 Videos
  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1 (Answer the following as true or false )|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|134 Videos

Similar Questions

Explore conceptually related problems

For any vectors vec a vec b , show that |vec a + vec b| le |vec a| + |vec b| .

For any two vectors vec a and vec b , prove that | vec a xx vec b|^(2) = |vec a|^(2)|vec b|^(2) - (vec a . vecb)^(2) = [[veca.veca veca .vecb], [veca.vecb vec b.vecb]]

If theta is the angle between any two vectors vec a and vec b , then |vec a. vec b| = | vec a xx vec b| , when theta is equal to

Find |vec a - vec b| , if two vectors vec a and vec b are such that |vec a | = 2, |vec b| = 3 and vec a.vec b = 4 .

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

The vectors vec a and vecb are such that |vec a| = 2, |vec b| = 3, veca.vecb = 4 .Find |veca - vec b|

Show that for any three vectors veca , vec b and vec c [ vec a + vec b, vecb + vec c , vec c + vec a ] =2[vec a , vec b , vecc] .

For non-zero vectors vec a , vec b ,a n d vec c ,|( vec axx vec b)dot vec c|=| vec a|| vec b|| vec c| holds if and only if a. vec a* vec b=0, vec b* vec c=0 b. vec b* vec c=0, vec c* vec a=0 c. vec c* vec a=0, vec a* vec b=0 d. vec a* vec b=0, vec b* vec c=0, vec c* vec a=0

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.