Home
Class 12
MATHS
Prove that vec a xx (vec b + vec c) + ...

Prove that
`vec a xx (vec b + vec c) + vec b xx(vec a + vec c)+ vec c xx(vec a + vec b) = vec 0`

Text Solution

Verified by Experts

The correct Answer is:
`vec 0`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1|4 Videos
  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1 (Answer the following as true or false )|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|134 Videos

Similar Questions

Explore conceptually related problems

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

Show that (vec a - vec b) xx (vec a + vec b) = 2 (vec a xx vec b)

If axx(bxxc)=(axxb)xxc , then ( vec cxx vec a)xx vec b= vec0 b. vec cxx( vec axx vec b)= vec0 c. vec bxx( vec cxx vec a) vec0 d. ( vec cxx vec a)xx vec b= vec bxx( vec cxx vec a)= vec0

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

If vectors b ,ca n dd are not coplanar, then prove that vector ( vec axx vec b)xx( vec cxx vec d)+( vec axx vec c)xx( vec d xx vec b)+( vec axx vec d)xx( vec bxx vec c) is parallel to vec adot

If vec axx( vec bxx vec c) is perpendicular to ( vec axx vec b)xx vec c , we may have a. ( vec a . vec c)| vec b|^2=( vec a . vec b)( vec b . vec c) b. vec adot vec b=0 c. vec adot vec c=0 d. vec bdot vec c=0