Home
Class 12
MATHS
For any three vectors vec a, vec b , vec...

For any three vectors `vec a, vec b , vec c` , show that `vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0`

Text Solution

Verified by Experts

The correct Answer is:
`vec 0`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1|4 Videos
  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1 (Answer the following as true or false )|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|134 Videos

Similar Questions

Explore conceptually related problems

Prove that vec a xx (vec b + vec c) + vec b xx(vec a + vec c)+ vec c xx(vec a + vec b) = vec 0

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

Show that (vec a - vec b) xx (vec a + vec b) = 2 (vec a xx vec b)

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

For any vectors vec a vec b , show that |vec a + vec b| le |vec a| + |vec b| .

Show that for any three vectors veca , vec b and vec c [ vec a + vec b, vecb + vec c , vec c + vec a ] =2[vec a , vec b , vecc] .

If vec a, vec b, vec c are three given vectors show that [ vec a + vecb + vec c , vecb + vec c , vec a + vec b + vec c ]=0.

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot