Home
Class 12
MATHS
Consider the 4 points A(3, 2, 1) B(4, x,...

Consider the 4 points A(3, 2, 1) B(4, x, 5) C(4, 2, -2) and D(6, 5, -1)
(i) Find `vec(AB) , vec (AC)` and `vec(AD)`.
(ii) If the points A, B, C and D are coplanar, find the value of x.

Text Solution

Verified by Experts

The correct Answer is:
(i) `3 hat i + 3 hat j - 2 hat k`
(ii) `therefore x = 5`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1|4 Videos
  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1 (Answer the following as true or false )|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|134 Videos

Similar Questions

Explore conceptually related problems

Consider the points A(1, 2, 3), B(4, 0, 4) and C(-2, 4, 2). (a). Find vec(AB) and vec(BC) (b) Show that the points A, B, C are collinear.

Consider the triangle ABC with vertices A(1, 1, 1) B(1, 2, 3) and C(2, 3, 1). (a) Find vec(AB) and vec(AC) Find vec (AB) xx vec (AC) (c) Hence find the area of the triangle ABC.

Consider the triangle ABC with vertices A(1,2,3) , B(-1, 0, 4) and C(0, 1, 2) (a) Find vec (AB) and vec (AC) Find angle A . (c) Find the area of triangle ABC.

If vec a = 3 hat i - hat j - 5 hatk, vec b = hat i - 5 hat j + 3 hat k , show that vec a + vec b and vec a - vec b are perpendicular. (b) Given the position vectors of three points A(hat i - hat j + 2 hat k) B (4 hat i + 5 hat j + 8 hat k) C (3 hat i + 3 hat j + 6 hat k) (i) Find vec(AB) and vec(AC) (ii) Prove that A, B, C are collinear points.

Let A(1, 2, 4) and B(2, -1, 3) be two points. (i) Find vec (AB ) (ii) Find a unit vector along vec(AB)

Consider the 4 points A, B, C and D with position vectors 4 hat i + 8 hat j + 12 hat k, 2 hat i + 4 hat j + 6 hat k , 3 hat i + 5 hat j + 4 hat k and 5 hat i + 8 hat j ++ 5 hat k . (i) Find vec(AB), vec(AC), vec (AD) (ii) Show that the 4 points are coplanar.

Statement 1: Let vec a , vec b , vec ca n d vec d be the position vectors of four points A ,B ,Ca n dD and 3 vec a-2 vec b+5 vec c-6 vec d=0. Then points A ,B ,C ,a n dD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector ( vec P Q , vec P Ra n d vec P S) are coplanar. Then vec P Q=lambda vec P R+mu vec P S ,w h e r elambdaa n dmu are scalars.

Statement 1: Let vec a , vec b , vec ca n d vec d be the position vectors of four points A ,B ,Ca n dD and 3 vec a-2 vec b+5 vec c-6 vec d=0. Then points A ,B ,C ,a n dD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector ( vec P Q , vec P Ra n d vec P S) are coplanar. Then vec P Q=lambda vec P R+mu vec P S ,w h e r elambdaa n dmu are scalars.

If |vec a| = 2, |vec b| = 5 and |vec a xx vec b| = 8 , find the value of vec a. vecb

If ( vec axx vec b)^2+( vec a dot vec b)^2=144a n d| vec a|=4, then find the value of | vec b|dot