Home
Class 12
MATHS
Let vec a = hat i + hat j + hat k , vec ...

Let `vec a = hat i + hat j + hat k , vec b = hat i ` and `vec c = c_(1)hat i + c_(2)hat j + c_(3)hat k`. If `c_(1) = 1` and `c_(2) = 2` , find `c_(3)` which makes `vec a, vec b` and `vec c` coplanar.

Text Solution

Verified by Experts

The correct Answer is:
`therefore c_(3) = 2`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1|4 Videos
  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.1 (Answer the following as true or false )|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|134 Videos

Similar Questions

Explore conceptually related problems

Let vec a = hat i + hat j + hat k , vec b = hat i and vec c = c_(1)hat i + c_(2)hat j +c_(3)hat k . Then if c_(2) = -1 and c_(3) = 1 , show that no value of c_(1) can make vec a, vec b and vec c coplanar.

Let vec(a)=hat(i)+hat(j)+hat(k),vec(b)=hat(i)and vec(c)=c_(1)hat(i)+c_(2)hat(j)+c_(3)hat(k). " If "c_(1)=1 and c_(2)=2" find "c_(3)" such that "vec(a), vec(b) and vec(c)" are coplanar. "

If vec(a)=hat(i)+hat(i)+hat(k).vec(b)=hat(i)andvec(c)=c_(1)hat(i)+c_(2)hat(j)+c_(3)hat(k). " If "c_(1)=1andc_(2)=2" find "c_(3)" such that "vec(a),vec(b)andvec(c)" are coplanar. " depends on neither x nor y .

If vec a = 2 hat i - 3 hat j + 4 hat k , vec b = hat i + 2 hat j - hat k and vec c = 3 hat i - hat j + 2 hat k , then (i) find [vec a vec b vec c] (ii) find [ vec a + vec b vec b + vec c vec c + veca] .

If vec a = hat i - 2 hat j + hat k , vec b = -2hat i+ 4 hat j + 5 hat k and vec c = hati -6 hat j - 7 hat k , find (i) veca - vec b- vec c (ii) 3 vec a + 5 vec b - 2 vec c .

If vec a = hat i + 2 hat j - 3 hat k and vec b = 3 hat i - hat j + 2 hat k , then vec a + vec b and vec a - vec b are

Let veca = hat i + hat j + hat k, vec b = 2 hat i + 3 hat j vec c = 3 hat i + 5 hat j - 2 hat k , vec d = - hat j + hat k (i) Find vec b - vec a . (ii) Find the unit vector along vec b - vec a . (iii) Prove that vec b - vec a and vec d - vec c are parallel vectors.

Let vec a = hat i + hat j + hat k, vec b = hat i - hat j + 2 hat k and vec c = x hat i +(x -2) hat j - hatk .If the vector vec c lies in the plane of veca and vecb , thenx equals

Find |vec a xx vec b| if vec a = hat i -7 hat j + 7 hat k and vec b = 3 hat i - 2 hat j + 2 hat k .