Home
Class 11
PHYSICS
vecP and vecQ are two vectors having mag...

`vecP and vecQ` are two vectors having magnitude 1 and 3 respectively and inclined at an angle `theta` .
If `|vecP+vecQ|=sqrt7`, then find the value of `(2vecP+vecQ).(vecP-vecQ)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((2\vec{P} + \vec{Q}) \cdot (\vec{P} - \vec{Q})\). Let's break it down step by step. ### Step 1: Understand the Dot Product The dot product of two vectors \(\vec{A}\) and \(\vec{B}\) is given by: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos(\phi) \] where \(\phi\) is the angle between the two vectors. ### Step 2: Expand the Expression We can expand \((2\vec{P} + \vec{Q}) \cdot (\vec{P} - \vec{Q})\) using the distributive property of the dot product: \[ (2\vec{P} + \vec{Q}) \cdot (\vec{P} - \vec{Q}) = 2\vec{P} \cdot \vec{P} - 2\vec{P} \cdot \vec{Q} + \vec{Q} \cdot \vec{P} - \vec{Q} \cdot \vec{Q} \] ### Step 3: Calculate Each Dot Product 1. **Calculate \(\vec{P} \cdot \vec{P}\)**: \[ \vec{P} \cdot \vec{P} = |\vec{P}|^2 = 1^2 = 1 \] 2. **Calculate \(\vec{Q} \cdot \vec{Q}\)**: \[ \vec{Q} \cdot \vec{Q} = |\vec{Q}|^2 = 3^2 = 9 \] 3. **Calculate \(\vec{P} \cdot \vec{Q}\)**: We know from the problem that: \[ |\vec{P} + \vec{Q}| = \sqrt{7} \] Therefore, \[ |\vec{P} + \vec{Q}|^2 = 7 \] Using the formula for the magnitude of the sum of two vectors: \[ |\vec{P} + \vec{Q}|^2 = |\vec{P}|^2 + |\vec{Q}|^2 + 2(\vec{P} \cdot \vec{Q}) \] Substituting the values: \[ 7 = 1 + 9 + 2(\vec{P} \cdot \vec{Q}) \] Simplifying this gives: \[ 7 = 10 + 2(\vec{P} \cdot \vec{Q}) \implies 2(\vec{P} \cdot \vec{Q}) = 7 - 10 = -3 \implies \vec{P} \cdot \vec{Q} = -\frac{3}{2} \] ### Step 4: Substitute Back into the Expanded Expression Now substituting back into our expanded expression: \[ (2\vec{P} + \vec{Q}) \cdot (\vec{P} - \vec{Q}) = 2(1) - 2\left(-\frac{3}{2}\right) + \left(-\frac{3}{2}\right) - 9 \] Calculating this step by step: 1. \(2(1) = 2\) 2. \(-2\left(-\frac{3}{2}\right) = 3\) 3. \(-\frac{3}{2} = -1.5\) 4. \(-9\) Combining these: \[ = 2 + 3 - 1.5 - 9 = 5 - 1.5 - 9 = 3.5 - 9 = -5.5 \] ### Final Answer Thus, the value of \((2\vec{P} + \vec{Q}) \cdot (\vec{P} - \vec{Q})\) is: \[ \boxed{-5.5} \]
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (3)|2 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (4)|13 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (1)|8 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos
  • MOTION IN A STRAIGHT LINE

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|16 Videos

Similar Questions

Explore conceptually related problems

if vecP +vecQ = vecP -vecQ , then

What is the angle between (vecP+vecQ) and (vecPxxvecQ)

If |vecP + vecQ| = |vecP -vecQ| the angle between vecP and vecQ is

What is the angle between vecP and the resultant of (vecP+vecQ) and (vecP-vecQ)

Two vectors vecP and vecQ are inclined to each other at angle theta . Which of the following is the unit vector perpendicular to vecP and vecQ ?

If x and y components of a vector vecP have numberical values 5 and 6 respectively and that of vecP + vecQ have magnitudes 10 and 9, find the magnitude of vecQ

Find the angle between two vectors vecp and vecq are 4,3 with respectively and when vecp.vecq =5 .

If vectors vecP,vecQ and vecR have magnitude 5,12 and 13 units and vecP+vecQ=vecR , the angle between vecQ and vecR is :

if |vecP + vecQ| = |vecP| + |vecQ| , the angle between the vectors vecP and vecQ is

For two vectors vecP and vecQ , show that (vecP+vecQ)xx(vecP-vecQ)=2(vecQxxvecP)