Home
Class 11
PHYSICS
Find the unit vector perpendicular to tw...

Find the unit vector perpendicular to two vectors `vecP=hati+hatj+2hatk` and `vecQ=2hati-4hatj+5hatk`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector perpendicular to the two vectors \(\vec{P} = \hat{i} + \hat{j} + 2\hat{k}\) and \(\vec{Q} = 2\hat{i} - 4\hat{j} + 5\hat{k}\), we will follow these steps: ### Step 1: Calculate the Cross Product of Vectors \(\vec{P}\) and \(\vec{Q}\) The cross product \(\vec{P} \times \vec{Q}\) can be calculated using the determinant of a matrix formed by the unit vectors and the components of \(\vec{P}\) and \(\vec{Q}\): \[ \vec{P} \times \vec{Q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 2 \\ 2 & -4 & 5 \end{vmatrix} \] Calculating this determinant: \[ \vec{P} \times \vec{Q} = \hat{i} \begin{vmatrix} 1 & 2 \\ -4 & 5 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 2 & -4 \end{vmatrix} \] Calculating the individual determinants: 1. \(\begin{vmatrix} 1 & 2 \\ -4 & 5 \end{vmatrix} = (1)(5) - (2)(-4) = 5 + 8 = 13\) 2. \(\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = (1)(5) - (2)(2) = 5 - 4 = 1\) 3. \(\begin{vmatrix} 1 & 1 \\ 2 & -4 \end{vmatrix} = (1)(-4) - (1)(2) = -4 - 2 = -6\) Now substituting back into the equation for the cross product: \[ \vec{P} \times \vec{Q} = 13\hat{i} - 1\hat{j} - 6\hat{k} \] ### Step 2: Find the Magnitude of the Cross Product The magnitude of the vector \(\vec{R} = 13\hat{i} - 1\hat{j} - 6\hat{k}\) is given by: \[ |\vec{R}| = \sqrt{(13)^2 + (-1)^2 + (-6)^2} \] \[ = \sqrt{169 + 1 + 36} = \sqrt{206} \] ### Step 3: Calculate the Unit Vector The unit vector \(\hat{n}\) in the direction of \(\vec{R}\) is given by: \[ \hat{n} = \frac{\vec{R}}{|\vec{R}|} = \frac{13\hat{i} - 1\hat{j} - 6\hat{k}}{\sqrt{206}} \] ### Final Answer Thus, the unit vector perpendicular to both \(\vec{P}\) and \(\vec{Q}\) is: \[ \hat{n} = \frac{13}{\sqrt{206}}\hat{i} - \frac{1}{\sqrt{206}}\hat{j} - \frac{6}{\sqrt{206}}\hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (3)|2 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (4)|13 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS (1)|8 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos
  • MOTION IN A STRAIGHT LINE

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|16 Videos

Similar Questions

Explore conceptually related problems

Find the unit vector perpendicular to the vectors vecA=(hati+2hatj-3hatk)andvecB=(-hati+hatj-hatk)

Find the unit vector perpendicular to ltbr. vecA=3hati+2hatj-hatk and vecB=hati-hatj+hatk

Determine a unit vector perpendicular to both the vectors vecA=2hati-3hatj+6hatk and vecB=hati-2hatj+4hatk

Find a unit vector perpendicular to the plane of two vectros. veca=hati-hatj+2hatk and vecb=2hati+3hatj-hatk

Find the unit vector perpendicular to each of the vectors veca = 3hati+2hatj-3hatk and vecb = hati+hatj-hatk .

Find the unit vector perpendicular to each of the vectors 6hati+2hatj+3hatk and 3hati-2hatk

A unit vector perpendicular to both the vectors 2hati-2hatj+hatk and 3hati+4hatj-5hatk , is

Find a unit vector perpendicular the vectors vec(A) = 4 hati = hatj +3 hatk and vec(B) =- 2hati + hatj - 2hatk .

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .