Home
Class 11
PHYSICS
It is given that |vecA(1)|=2,|vecA(2)|=3...

It is given that `|vecA_(1)|=2,|vecA_(2)|=3 and |vecA_(1)+vecA_(2)|=3`
Find the value of `(vecA_(1)+vecA_(2)).(2vecA_(1)-3vecA_(2))`

Text Solution

AI Generated Solution

To solve the problem step by step, we need to find the value of \((\vec{A_1} + \vec{A_2}) \cdot (2\vec{A_1} - 3\vec{A_2})\) given the magnitudes of the vectors and their resultant. ### Step 1: Understand the given information We have: - \(|\vec{A_1}| = 2\) - \(|\vec{A_2}| = 3\) - \(|\vec{A_1} + \vec{A_2}| = 3\) ...
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise NCERT FILE (Solved) NCERT (Textbook Exercises)|25 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise NCERT FILE (Solved) (NCERT (Additional Exercises))|7 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise Conceptual Questions|23 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos
  • MOTION IN A STRAIGHT LINE

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|16 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are two non-collinear unit vectors and if |veca_(1) + veca_(2)|=sqrt(3) , then the value of (veca_(1) -veca_(2))(2veca_(1) +veca_(2)) is:

Let | vec A _ 1 | = 3 , | vec A _ 2 | = 5 and | vecA _ 1 + vecA _ 2 | = 5 . The value of ( 2 vec A _ 1 + 3 vecA _ 2 ). (3 vecA _ 1 - 2 vecA _ 2 ) is ____________.

(vecA+2vecB).(2vecA-3vecB) :-

If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|

Lines vecr = veca _(1)+veca _(2)and vecr = veca _(2)+ vecb _(2) lie in a plane if :

If |veca xx vecb|^(2) + |veca.vecb|^(2)=144 and |veca|=4 , then find the value of |vecb|

The base vectors veca_(1), veca_(2) and veca_(3) are given in terms of base vectors vecb_(1), vecb_(2) and vecb_(3) as veca_(1) = 2vecb_(1)+3vecb_(2)-vecb_(3) , veca-(2)=vecb_(1)-2vecb_(2)+2vecb_(3) and veca_(3) =-2vecb_(1) + vecb_(2)-2vecb_(3) , if vecF = 3vecb_(1)-vecb_(2)+2vecb_(3) , then vector vecF in terms of veca_(1), veca_(2) and veca_(3) is

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb+ vecc.vecc + vecc.veca .

Given |veca|=10, |vecb|=2 and veca.veca=12 , find |vecaxxvecb|