Home
Class 11
PHYSICS
If |vec A|=2 and | vec B| =4 , then mat...

If ` |vec A|=2 and | vec B| =4` , then match the relations in colum I with theange ` theta` between `vec A and vec B` in column II.
Column I , Column II
(a) ` vec A.vec B=0` , (i) ` theta` =0`
(b) ` vec A . Vec B= + 8` , (ii) ` theta =90^@`
(c ) ` vec A .vec B =4` , (iii) ` theta =180^@`
(d) ` vec A .vec B =- 8` , (iv) ` theta =60^@`.

Text Solution

Verified by Experts

(a) `vecA.vecB =AB cos theta=0`
`=2xx4 cos theta =0`
or `cos theta =0`
`rArr theta =90^(@)`
`(a) rarr (ii)`
(b) `vecA.vecB=2xx4 cos theta =8`
`rArr cos =1`
`rArr =0^(@)`
(b) `rarr (i) `
`rArr cos theta =1//2`
`rArr theta =60^(@)`
(c) `rarr (iv)`
(d) `vec A.vecB=2xx4 cos theta =-8`
`rArr cos theta =-0`
or `theta =180^(@)`
(d) `rarr (iii)`
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise Higher Order Thinking Skills & Advanced Level|6 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise Revision Exercises (very Short Answer Questions)|46 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise NCERT FILE (Solved) (NCERT (Additional Exercises))|7 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos
  • MOTION IN A STRAIGHT LINE

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|16 Videos

Similar Questions

Explore conceptually related problems

If | vec A | =2 and | vec B| =4 , then match the relations in column I with the ange theta between vec A and vec B in column II. Column I, Column II (a) |vec A xx vec B| =0 , (i) theta =30^@ (b) | vec A xx vec B|=0 , (ii) theta =45^@ (c ) vec A xx vec B| =4 , (iii) theta =90^@ (d) | vec A xxx vec B| = 4 sqrt 2 , (iv) theta =0^@ .

IF |vec(A)| = 2 and |vec(B)| = 4 , then match the relation in Column I with the angle theta between A and B in Column II. Now, mark the correct above choice from the given codes :

(vec a.vec b)vec c

If vec A.vec B= |vec A xx vec B|, find the value of angle between vec A and vec B .

If vec a and vec b are two vectors such that |vec a|=4,|vec b|=3 and vec avec b=6. Find the angle between vec a and vec b

If |vec a|=2,|b|=5 and |vec a xxvec b|=8, find vec a.vec b

If |vec a|=2|vec b|=5 and |vec a xxvec b|=8, then find the value of vec a.vec b.

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

If |vec a|+|vec b|=|vec c| and vec a+vec b=vec c, then find the angle between vec a and vec b