Home
Class 11
PHYSICS
Two vectors vecA and vecB are defined as...

Two vectors `vecA` and `vecB` are defined as `vecA=ahati` and `vecB=a( cos omegahati+sin omega hatj)`, were a is a constant and `omega=pi//6 rads^(-1)`. If `|vecA+vecB|=sqrt(3)|vecA-vecB|` at time `t=tau` for the first time, the value of `tau`, in seconds , is _________

Text Solution

Verified by Experts

The correct Answer is:
`[2.00]`

[2.00]: `vecA=ahati and vecB=a cos omega thati+a sin omega thatj`
`|vecA+vecB|=sqrt3|vecA-vecB|`
`rArr sqrt((a+ a cos omegat)^(2)+(a sin omega t)^(2))`
`=sqrt3 sqrt((a-acos omegat)^(2)+(a sin omega t)^(2))`
`rArr a^(2)+a^(2) cos ^(2) omegat+a^(2) sin^(2) omegat`
`=3(a^(2)+a^(2) cos ^(2) omega t-2a^(2) cos omega t+a^(2) sin ^(2) omegat)`
`rArr 2a^(2) +2a^(2) cos omega t =3 (2a^(2)-2a^(2) cos omegat)`
`rArr a^(2)+a^(2) cos omega t =3a^(2)-3a^(2) cos omega t`
`rArr 4a^(2) cos omega t =2a^(2)`
`rArr cos omega t=(1)/(2)`
`rArr omega t =pi//3`
`rArr (pi)/(6) t=(pi)/(3) rArr t=2s`
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise COMPETITION FILE OBJECTIVE TYPE QUESTIONS (NCERT (Exemplar Problems Objective Questions))|15 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos
  • MOTION IN A PLANE

    MODERN PUBLICATION|Exercise COMPETITION FILE OBJECTIVE TYPE QUESTIONS (MATRIX MATCH TYPE QUESTIONS)|1 Videos
  • MECHANICAL PROPERTIES OF FLUIDS

    MODERN PUBLICATION|Exercise Chapter Practise Test|16 Videos
  • MOTION IN A STRAIGHT LINE

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|16 Videos

Similar Questions

Explore conceptually related problems

Two vectors vecA and vecB are such that vecA+vecB=vecA-vecB . Then

If |vecA xx vecB| = sqrt(3) vecA .vecB then the value of |vecA xx vecB| is :

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

For vectors vecA and vecB , (vecA + vecB). (vecA xx vecB) will be :

If vecA.vecB = |vecA xx vecB| , find angle between vecA and vecB .

the value of (vecA+vecB)xx(vecA-vecB) is

vecA and vecB and vectors expressed as vecA = 2hati + hatj and vecB = hati - hatj Unit vector perpendicular to vecA and vecB is:

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :

vecA and vecB are two vectors and theta is the angle between them, if |vecA xx vecB|=sqrt(3)(vecA.vecB) the value of theta is:-

If vecA||vecB then vecA xx vecB =……….