Home
Class 9
MATHS
If x-(2)/(sqrt(10)-sqrt(8)),y-(2)/(sqrt(...

If `x-(2)/(sqrt(10)-sqrt(8)),y-(2)/(sqrt(10)+2sqrt(2))`, then `(x-y)^(2)`=

A

`4sqrt(2)`

B

32

C

`8sqrt(2)`

D

64

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \((x - y)^2\) given the values of \(x\) and \(y\): 1. **Define \(x\) and \(y\)**: \[ x = \frac{2}{\sqrt{10} - \sqrt{8}}, \quad y = \frac{2}{\sqrt{10} + 2\sqrt{2}} \] 2. **Rationalize \(x\)**: To rationalize \(x\), multiply the numerator and denominator by the conjugate of the denominator: \[ x = \frac{2}{\sqrt{10} - \sqrt{8}} \cdot \frac{\sqrt{10} + \sqrt{8}}{\sqrt{10} + \sqrt{8}} = \frac{2(\sqrt{10} + \sqrt{8})}{(\sqrt{10})^2 - (\sqrt{8})^2} \] Calculate the denominator: \[ (\sqrt{10})^2 - (\sqrt{8})^2 = 10 - 8 = 2 \] Thus, \[ x = \frac{2(\sqrt{10} + \sqrt{8})}{2} = \sqrt{10} + \sqrt{8} \] 3. **Rationalize \(y\)**: Similarly, rationalize \(y\): \[ y = \frac{2}{\sqrt{10} + 2\sqrt{2}} \cdot \frac{\sqrt{10} - 2\sqrt{2}}{\sqrt{10} - 2\sqrt{2}} = \frac{2(\sqrt{10} - 2\sqrt{2})}{(\sqrt{10})^2 - (2\sqrt{2})^2} \] Calculate the denominator: \[ (\sqrt{10})^2 - (2\sqrt{2})^2 = 10 - 8 = 2 \] Thus, \[ y = \frac{2(\sqrt{10} - 2\sqrt{2})}{2} = \sqrt{10} - 2\sqrt{2} \] 4. **Calculate \(x - y\)**: Now, find \(x - y\): \[ x - y = (\sqrt{10} + \sqrt{8}) - (\sqrt{10} - 2\sqrt{2}) = \sqrt{8} + 2\sqrt{2} \] Since \(\sqrt{8} = 2\sqrt{2}\), we have: \[ x - y = 2\sqrt{2} + 2\sqrt{2} = 4\sqrt{2} \] 5. **Calculate \((x - y)^2\)**: Now, we need to square \(x - y\): \[ (x - y)^2 = (4\sqrt{2})^2 = 16 \cdot 2 = 32 \] Thus, the final answer is: \[ \boxed{32} \]

To solve the problem, we need to find \((x - y)^2\) given the values of \(x\) and \(y\): 1. **Define \(x\) and \(y\)**: \[ x = \frac{2}{\sqrt{10} - \sqrt{8}}, \quad y = \frac{2}{\sqrt{10} + 2\sqrt{2}} \] 2. **Rationalize \(x\)**: ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|15 Videos
  • NUMBER SYSTEMS

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application Level 1|30 Videos
  • MATRICES

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|20 Videos
  • PERCENTAGES, PROFIT AND LOSS, DISCOUNT AND PARTERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|13 Videos

Similar Questions

Explore conceptually related problems

If x=(2)/(sqrt(3)-sqrt(5)) and y=(2)/(sqrt(3)+sqrt(5)) , then x+y = _______ .

For (1)/(asqrt(x)+bsqrt(y)) the rationalising factor is a asqrt(x)-bsqrt(y) . If x=(7sqrt(3))/(sqrt(10)+sqrt(3))-(3sqrt(2))/(sqrt(15)+3sqrt(2))-(2sqrt(5))/(sqrt(6)+sqrt(5)) , then value of x^(4)+x^(2) is

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), then find the value of x^(2)+y^(2)

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))"and"y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then x^2+xy+y^2=

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^(2)+y^(2)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), find x^(2)+y^(2)

if x=(sqrt(10)+sqrt(2))/(2) and y=(sqrt(10)-sqrt(2))/(2) then the value of log_(2)(x^(2)+xy+y^(2))

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

PEARSON IIT JEE FOUNDATION-NUMBER SYSTEMS-Level 2
  1. If (2^(m+n))/(2^(m-n))=16 and a=2^(1/10) then ((a^(2m+n-p))^2)/((a^(m-...

    Text Solution

    |

  2. Simplify [(p^(-1)+q^(-1))(p^(-1)-q^(-1))div ((1)/(p^(-1))-(1)/(q^(-1...

    Text Solution

    |

  3. If x-(2)/(sqrt(10)-sqrt(8)),y-(2)/(sqrt(10)+2sqrt(2)), then (x-y)^(2)=

    Text Solution

    |

  4. If a=sqrt(6)-sqrt(3), b=sqrt(3)-sqrt(2) and c=sqrt(2)-sqrt(6), then fi...

    Text Solution

    |

  5. sqrt((81)/(64)sqrt((81)/(64))sqrt((81)/(61))sqrt((81)/(64))...oo)=

    Text Solution

    |

  6. If a^(p)=b^(q)=c^(r)=abc , then pqr=.

    Text Solution

    |

  7. The value of {(23+2^2)^(2/3)+\ (140-19)^(1/2)}^2 , is

    Text Solution

    |

  8. If x=sqrt6+sqrt5 then x^2+1/x^2-2=

    Text Solution

    |

  9. sqrt(6+sqrt(6+sqrt(6+…oo))) is equal to .

    Text Solution

    |

  10. Simplify (1)/(sqrt(19)-sqrt(360))-(1)/(sqrt(20)+sqrt(396))=

    Text Solution

    |

  11. If a=sqrt(17)-sqrt(16) and b=sqrt(16)-sqrt(15) then

    Text Solution

    |

  12. (root(6)(15-2sqrt(56)))*(root(3)(sqrt(7)+2sqrt(2)))=.

    Text Solution

    |

  13. sqrt(sqrt(63)+sqrt(56))=

    Text Solution

    |

  14. If (sqrt(7)+2sqrt(3))/(2sqrt(7)-sqrt(5))=(c+sqrt(p)+sqrt(q)+sqrt(r))/(...

    Text Solution

    |

  15. The following are the steps involved in finding the value of x-y from(...

    Text Solution

    |

  16. The following are the steps involved in finding the least amont sqrt(3...

    Text Solution

    |

  17. If y=3-sqrt(8), then (y-(1)/(y))^(2) =.

    Text Solution

    |

  18. The following are the steps involved in finding the value of a+b from ...

    Text Solution

    |

  19. The following are the steps involved in finding the greatest among roo...

    Text Solution

    |

  20. If x=(1)/(sqrt(3)+2), then (x+(1)/(x))^(2)=

    Text Solution

    |