Home
Class 10
MATHS
If log(4) x + log(8)x^(2) + log(16)x^(3)...

If `log_(4) x + log_(8)x^(2) + log_(16)x^(3) = (23)/(2)`, then `log_(x) 8 =`

A

2

B

`(1)/(2)`

C

3

D

`(3)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{4} x + \log_{8} x^{2} + \log_{16} x^{3} = \frac{23}{2} \), we will follow these steps: ### Step 1: Rewrite the logarithms in terms of base 2 We know that: - \( 4 = 2^2 \) - \( 8 = 2^3 \) - \( 16 = 2^4 \) Using the change of base formula, we can rewrite the logarithms: \[ \log_{4} x = \frac{\log_{2} x}{\log_{2} 4} = \frac{\log_{2} x}{2} \] \[ \log_{8} x^{2} = \frac{\log_{2} x^{2}}{\log_{2} 8} = \frac{2 \log_{2} x}{3} \] \[ \log_{16} x^{3} = \frac{\log_{2} x^{3}}{\log_{2} 16} = \frac{3 \log_{2} x}{4} \] ### Step 2: Substitute back into the equation Now substituting these back into the original equation: \[ \frac{\log_{2} x}{2} + \frac{2 \log_{2} x}{3} + \frac{3 \log_{2} x}{4} = \frac{23}{2} \] ### Step 3: Find a common denominator The common denominator for \(2\), \(3\), and \(4\) is \(12\). We will convert each term: \[ \frac{\log_{2} x}{2} = \frac{6 \log_{2} x}{12} \] \[ \frac{2 \log_{2} x}{3} = \frac{8 \log_{2} x}{12} \] \[ \frac{3 \log_{2} x}{4} = \frac{9 \log_{2} x}{12} \] Now we can combine them: \[ \frac{6 \log_{2} x + 8 \log_{2} x + 9 \log_{2} x}{12} = \frac{23}{2} \] \[ \frac{23 \log_{2} x}{12} = \frac{23}{2} \] ### Step 4: Solve for \( \log_{2} x \) Cross-multiplying gives: \[ 23 \log_{2} x = 23 \cdot 6 \] \[ \log_{2} x = 6 \] ### Step 5: Solve for \( x \) Using the definition of logarithms: \[ x = 2^{6} = 64 \] ### Step 6: Find \( \log_{x} 8 \) Now we need to find \( \log_{x} 8 \): \[ \log_{64} 8 = \frac{\log_{2} 8}{\log_{2} 64} \] Calculating each logarithm: \[ \log_{2} 8 = 3 \quad (\text{since } 8 = 2^3) \] \[ \log_{2} 64 = 6 \quad (\text{since } 64 = 2^6) \] Thus, \[ \log_{64} 8 = \frac{3}{6} = \frac{1}{2} \] ### Final Answer \[ \log_{x} 8 = \frac{1}{2} \]

To solve the equation \( \log_{4} x + \log_{8} x^{2} + \log_{16} x^{3} = \frac{23}{2} \), we will follow these steps: ### Step 1: Rewrite the logarithms in terms of base 2 We know that: - \( 4 = 2^2 \) - \( 8 = 2^3 \) - \( 16 = 2^4 \) ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    PEARSON IIT JEE FOUNDATION|Exercise Level 2|15 Videos
  • LOGARITHMS

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|15 Videos
  • LOGARITHMS

    PEARSON IIT JEE FOUNDATION|Exercise Essay Type Questions|5 Videos
  • LINEAR PROGRAMMING

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|10 Videos
  • MATHEMATICAL INDUCTION AND BIONOMIAL THEOREM

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|15 Videos

Similar Questions

Explore conceptually related problems

log_(3)(5+x)+log_(8)8=2^(2)

log_(x)(9x^(2))*log_(3)^(2)(x)=4

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If log_(sqrt(2)) sqrt(x) +log_(2) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If log_(4)(log_(2)x) + log_(2) (log_(4) x) = 2 , then find log_(x)4 .

if log_(2)x+log_(4)x+log_(16)x=(21)/(4) find x

(log_(4)x-2)*log_(4)x=(3)/(2)(log_(4)x-1)

if log_(9)x+log_(4)y=(7)/(2) and log_(9)x-log_(8)y=-(3)/(2) then x+y is

if log_(2)x+log_(4)x+log_(16)x=(21)/(4)* find x

PEARSON IIT JEE FOUNDATION-LOGARITHMS-Level 1
  1. If log(3) .(x^(3))/(3) - 2 log(3) 3x^(3)=a-b log(3)x, then find the v...

    Text Solution

    |

  2. The value of log(40)5 lies between .

    Text Solution

    |

  3. If x = log((1)/(2)).(4)/(3).log(2).(1)/(3). log((2)/(3)) 0.8, then .

    Text Solution

    |

  4. If log(144)729 = x, then the value of log(36)256 is .

    Text Solution

    |

  5. The solution set of the equation log (2x - 5) - log 3 = log 4 - log (x...

    Text Solution

    |

  6. If log(10)tan 19^(@) + log(10) tan 21^(@) + log(10) tan 37^(@) + log(1...

    Text Solution

    |

  7. The solution set of the equation log (x + 6) - log 8 = log 9 - log (x ...

    Text Solution

    |

  8. If log(40) 4 = x and log(40) 5 = y, then express log(40)32 in terms o...

    Text Solution

    |

  9. If log(10) 11 = p, then log(10)((1)/(110)) = .

    Text Solution

    |

  10. If log(4).(x^(4))/(4)+3log(4) 4x^(4) = p + q log(4) x, then the value...

    Text Solution

    |

  11. If log(4) x + log(8)x^(2) + log(16)x^(3) = (23)/(2), then log(x) 8 =

    Text Solution

    |

  12. If log((x+y))(x - y) = 7, then the value of log((x^(2)-y^(2)))(x^(2)+...

    Text Solution

    |

  13. The value of log(35)3 lies between .

    Text Solution

    |

  14. If log((a+b)/(6))=(1)/(2)(loga+logb), then (a)/(b) + (b)/(a) = .

    Text Solution

    |

  15. If log(p)q = x, then log(1//p)((1)/(q))= .

    Text Solution

    |

  16. If log((x-y))(x+y)=5, then what is the value of log(x^(2)-y^(2))(x^(2...

    Text Solution

    |

  17. The value of log(a)1+log(2)2^(2) + log(3)3^(3) (where a is a positive...

    Text Solution

    |

  18. log(1//2).(2)/(3) log(2//3) .(1)/(2). The appropriate symbol in the ...

    Text Solution

    |

  19. The value of log(3)[log(2){log(4)(log(5)625^(4))}] is .

    Text Solution

    |

  20. If log(x-3)+log(x+2)=log(x^(2)+x-6), then the real value of x, which ...

    Text Solution

    |