Home
Class 14
MATHS
Consider the following (i) (cos^(2) ...

Consider the following
(i) `(cos^(2) theta - sin^(2) theta)/(cos^(2) theta + sin^(2) theta) = cos^(2) theta (1 + tan theta)`
(ii) `(1 + sin theta)/(1 - sin theta) = (tan theta + sec theta)^(2)`
Which of the equation given above is/are correct ?

A

Only (i)

B

Only (ii)

C

Both (i) and (ii)

D

Neither (i) nor (ii)

Text Solution

AI Generated Solution

The correct Answer is:
To determine the correctness of the given statements, we will evaluate each statement step by step. ### Statement (i): \[ \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta} = \cos^2 \theta (1 + \tan \theta) \] 1. **Evaluate the left-hand side (LHS)**: - We know that \(\cos^2 \theta + \sin^2 \theta = 1\). - Therefore, the LHS simplifies to: \[ \frac{\cos^2 \theta - \sin^2 \theta}{1} = \cos^2 \theta - \sin^2 \theta \] 2. **Evaluate the right-hand side (RHS)**: - We can express \(\tan \theta\) as \(\frac{\sin \theta}{\cos \theta}\). - Thus, the RHS becomes: \[ \cos^2 \theta \left(1 + \frac{\sin \theta}{\cos \theta}\right) = \cos^2 \theta + \cos \theta \sin \theta \] 3. **Set LHS equal to RHS**: - We need to check if: \[ \cos^2 \theta - \sin^2 \theta = \cos^2 \theta + \cos \theta \sin \theta \] - Rearranging gives: \[ -\sin^2 \theta = \cos \theta \sin \theta \] - This is not generally true, so Statement (i) is **incorrect**. ### Statement (ii): \[ \frac{1 + \sin \theta}{1 - \sin \theta} = (\tan \theta + \sec \theta)^2 \] 1. **Evaluate the left-hand side (LHS)**: - The LHS remains as: \[ \frac{1 + \sin \theta}{1 - \sin \theta} \] 2. **Evaluate the right-hand side (RHS)**: - We know that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) and \(\sec \theta = \frac{1}{\cos \theta}\). - Therefore, the RHS becomes: \[ \left(\frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta}\right)^2 = \left(\frac{\sin \theta + 1}{\cos \theta}\right)^2 = \frac{(\sin \theta + 1)^2}{\cos^2 \theta} \] 3. **Set LHS equal to RHS**: - We need to check if: \[ \frac{1 + \sin \theta}{1 - \sin \theta} = \frac{(\sin \theta + 1)^2}{\cos^2 \theta} \] - Cross-multiplying gives: \[ (1 + \sin \theta) \cos^2 \theta = (1 - \sin \theta)(1 + \sin \theta)^2 \] - Expanding both sides and simplifying shows that both sides are equal, confirming that Statement (ii) is **correct**. ### Conclusion: - Statement (i) is incorrect. - Statement (ii) is correct. Thus, the correct answer is that only the second statement is correct.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise Exercise Base Level Questions|75 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

(1 + sin theta-cos theta) / (1 + sin theta + cos theta) = (tan theta) / (2)

Cosider the following : 1. tan ^(2) theta - sin ^(2) theta = tan ^(2) theta sin ^(2) theta 2. (cosec theta - sin theta ) (sec theta - cos theta ) (tan theta + cot theta ) =1 Which of the above is/are correct ?

(cos theta-sin theta) / (cos theta + sin theta) = sec2 theta-tan2 theta

1- (sin ^ (2) theta) / (1 + cos theta) + (1 + cos theta) / (sin theta) - (sin theta) / (1-cos theta) - (1) / (sec theta)

If 2 - cos^(2) theta = 3 sin theta cos theta , sin theta ne cos theta then tan theta is

Consider the following : 1. tan^(2) theta - sin^(2) theta = tan^(2) theta sin ^(2) theta 2. (1 + cot^(2) theta) (1 - cos theta) (1 + cos theta) = 1 Which of the statements given below is correct

(sin theta-cos theta + 1) / (sin theta + cos theta-1) = sec theta + tan theta

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

Prove that (i) (1- sin theta)/(1+ sin theta)=(sec theta - tan theta )^(2) (ii) ((1+cos theta))/((1- cos theta))= ("cosec" theta + cot theta)^(2)

(sin theta+sin2 theta)/(1+cos theta+cos2 theta)=tan theta

ARIHANT SSC-TRIGONOMETRY-Higher Skill Level Questions
  1. If (sinx + sin y ) = a and (cos x + cos y ) = b what is the value of...

    Text Solution

    |

  2. Consider the following (i) (cos^(2) theta - sin^(2) theta)/(cos^(...

    Text Solution

    |

  3. The value of (tan 1^(@) tan 2^(@) tan 3^(@) … tan 89^(@)) is

    Text Solution

    |

  4. If sec theta + tan theta = p , then sin theta is

    Text Solution

    |

  5. If sin theta + cos theta = x , then the value of cos^(6) theta + sin^...

    Text Solution

    |

  6. If (1 + tanA)(1 + tan B) = 2, then find the value of (A +B).

    Text Solution

    |

  7. If sin (10^(@) 6' 32'') = a , then the value of cos (79^(@) 53' 28'') ...

    Text Solution

    |

  8. If x + y =z, find the value of cos^2 x + cos^2 y +cos^2z- 2cosx.cosy.c...

    Text Solution

    |

  9. If costheta + sec theta =2, then the value of cos^6theta + sec^6 theta...

    Text Solution

    |

  10. If sintheta -costheta =0, find the value of sin[pi/2-theta]+cos""(pi/...

    Text Solution

    |

  11. The maximum value of sin^8 theta + cos^14 theta for all real values of...

    Text Solution

    |

  12. If l cos^2 theta + m sin^2 theta =(cos^2 theta (cosec^2theta +1))/(cos...

    Text Solution

    |

  13. DeltaABC is a right angled triangle, where angle ABC = 90^@,If AC = 2s...

    Text Solution

    |

  14. If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10)...

    Text Solution

    |

  15. If a cos theta-b sin theta = c, then find the value of a sin theta + b...

    Text Solution

    |

  16. If tan alpha = n tan beta and sin alpha = m sin beta, then cos^2 alpha...

    Text Solution

    |

  17. If sin theta cos theta = 1//2, then what is sin^6 theta +cos^6 theta e...

    Text Solution

    |

  18. The value of the expression cosec (75^(@)+theta) - sec(15^@)-theta)-ta...

    Text Solution

    |

  19. If cos x + sec x = 2, then what is cos ^(n) x + sec ^(n) x equal to,...

    Text Solution

    |

  20. If alpha and beta are complementary angles, then what is sqrt(cos alph...

    Text Solution

    |