Home
Class 14
MATHS
If sin theta + cos theta = x , then the...

If `sin theta + cos theta = x ` , then the value of `cos^(6) theta + sin^(6) theta` is equal to

A

`(1)/(4)`

B

`(1)/(4) (1 + 6x^(2))`

C

`(1)/(4) ( 1 + 6x^(2) - 3x^(4))`

D

`(1)/(2) (5 - 3x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin \theta + \cos \theta = x \), we need to find the value of \( \cos^6 \theta + \sin^6 \theta \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ \sin \theta + \cos \theta = x \] 2. **Square both sides**: \[ (\sin \theta + \cos \theta)^2 = x^2 \] Expanding the left side using the identity \( (A + B)^2 = A^2 + B^2 + 2AB \): \[ \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = x^2 \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ 1 + 2\sin \theta \cos \theta = x^2 \] 3. **Rearranging to find \( \sin \theta \cos \theta \)**: \[ 2\sin \theta \cos \theta = x^2 - 1 \] Therefore: \[ \sin \theta \cos \theta = \frac{x^2 - 1}{2} \] 4. **Now, we need to find \( \sin^2 \theta \cos^2 \theta \)**: \[ \sin^2 \theta \cos^2 \theta = \left(\sin \theta \cos \theta\right)^2 = \left(\frac{x^2 - 1}{2}\right)^2 = \frac{(x^2 - 1)^2}{4} \] 5. **Using the identity for \( \sin^6 \theta + \cos^6 \theta \)**: We can use the formula: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Here, let \( a = \sin^2 \theta \) and \( b = \cos^2 \theta \): \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \sin^6 \theta + \cos^6 \theta = 1 \cdot (\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) \] 6. **Now, express \( \sin^4 \theta + \cos^4 \theta \)**: Using the identity: \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] Substitute \( \sin^2 \theta \cos^2 \theta \): \[ \sin^4 \theta + \cos^4 \theta = 1 - 2 \cdot \frac{(x^2 - 1)^2}{4} = 1 - \frac{(x^2 - 1)^2}{2} \] 7. **Putting it all together**: \[ \sin^6 \theta + \cos^6 \theta = \sin^4 \theta + \cos^4 \theta - \sin^2 \theta \cos^2 \theta \] Substitute the values: \[ = \left(1 - \frac{(x^2 - 1)^2}{2}\right) - \frac{(x^2 - 1)^2}{4} \] Combine the terms: \[ = 1 - \frac{2(x^2 - 1)^2}{4} - \frac{(x^2 - 1)^2}{4} = 1 - \frac{3(x^2 - 1)^2}{4} \] 8. **Final expression**: \[ \sin^6 \theta + \cos^6 \theta = 1 - \frac{3(x^2 - 1)^2}{4} \] ### Final Answer: \[ \sin^6 \theta + \cos^6 \theta = 1 - \frac{3(x^2 - 1)^2}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise Exercise Base Level Questions|75 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

sin^(6) theta + cos^(6) theta is equal to

The Maximum value of cos^(6)theta+sin^(6)theta is :

If sin theta+cos ec theta=2, then the value of sin^(8)theta+cos ec^(8)theta is equal to

If sin theta-cos theta=0 then find the value of sin^6theta+cos^6theta

If sin theta+cos theta=1, then the value of sin2 theta is equal to

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is:

If sin theta + cos theta =1, the value of sin theta cos theta is

If sin theta+ cos theta= (1)/(2) , then 16(sin (2theta)+ cos (4theta) + sin (6theta)) is equal to

If cos theta + sin theta =sqrt2 cos theta , then the value of (cos theta -sin theta)/(sin theta) is

sin ^ (6) theta + cos ^ (6) theta =

ARIHANT SSC-TRIGONOMETRY-Higher Skill Level Questions
  1. The value of (tan 1^(@) tan 2^(@) tan 3^(@) … tan 89^(@)) is

    Text Solution

    |

  2. If sec theta + tan theta = p , then sin theta is

    Text Solution

    |

  3. If sin theta + cos theta = x , then the value of cos^(6) theta + sin^...

    Text Solution

    |

  4. If (1 + tanA)(1 + tan B) = 2, then find the value of (A +B).

    Text Solution

    |

  5. If sin (10^(@) 6' 32'') = a , then the value of cos (79^(@) 53' 28'') ...

    Text Solution

    |

  6. If x + y =z, find the value of cos^2 x + cos^2 y +cos^2z- 2cosx.cosy.c...

    Text Solution

    |

  7. If costheta + sec theta =2, then the value of cos^6theta + sec^6 theta...

    Text Solution

    |

  8. If sintheta -costheta =0, find the value of sin[pi/2-theta]+cos""(pi/...

    Text Solution

    |

  9. The maximum value of sin^8 theta + cos^14 theta for all real values of...

    Text Solution

    |

  10. If l cos^2 theta + m sin^2 theta =(cos^2 theta (cosec^2theta +1))/(cos...

    Text Solution

    |

  11. DeltaABC is a right angled triangle, where angle ABC = 90^@,If AC = 2s...

    Text Solution

    |

  12. If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10)...

    Text Solution

    |

  13. If a cos theta-b sin theta = c, then find the value of a sin theta + b...

    Text Solution

    |

  14. If tan alpha = n tan beta and sin alpha = m sin beta, then cos^2 alpha...

    Text Solution

    |

  15. If sin theta cos theta = 1//2, then what is sin^6 theta +cos^6 theta e...

    Text Solution

    |

  16. The value of the expression cosec (75^(@)+theta) - sec(15^@)-theta)-ta...

    Text Solution

    |

  17. If cos x + sec x = 2, then what is cos ^(n) x + sec ^(n) x equal to,...

    Text Solution

    |

  18. If alpha and beta are complementary angles, then what is sqrt(cos alph...

    Text Solution

    |

  19. If sin theta + 2cos theta = -1, where 0 lt theta lt pi/2, what is 2 s...

    Text Solution

    |

  20. If sin (A +B) =1, where 0 lt B lt 45^@, what is cos (A -B) equal to ?

    Text Solution

    |