Home
Class 14
MATHS
If l cos^2 theta + m sin^2 theta =(cos^2...

If `l cos^2 theta + m sin^2 theta =(cos^2 theta (cosec^2theta +1))/(cosec^2 theta -1), 0^@ lt theta lt 90^@` , then ` tan theta` is equal to

A

`sqrt((1-2)/(1-m))`

B

`sqrt((2-l)/(1-m))`

C

`sqrt((1-2)/(m-1))`

D

`sqrt((l-1)/(2-m))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we will follow these steps: ### Step 1: Rewrite the given equation The equation provided is: \[ l \cos^2 \theta + m \sin^2 \theta = \frac{\cos^2 \theta (\csc^2 \theta + 1)}{\csc^2 \theta - 1} \] ### Step 2: Simplify the right-hand side We know that: \[ \csc^2 \theta = \frac{1}{\sin^2 \theta} \] Thus, we can rewrite the right-hand side: \[ \csc^2 \theta + 1 = \frac{1}{\sin^2 \theta} + 1 = \frac{1 + \sin^2 \theta}{\sin^2 \theta} \] And: \[ \csc^2 \theta - 1 = \frac{1}{\sin^2 \theta} - 1 = \frac{1 - \sin^2 \theta}{\sin^2 \theta} = \frac{\cos^2 \theta}{\sin^2 \theta} \] Substituting these into the right-hand side gives: \[ \frac{\cos^2 \theta \left(\frac{1 + \sin^2 \theta}{\sin^2 \theta}\right)}{\frac{\cos^2 \theta}{\sin^2 \theta}} = \frac{\cos^2 \theta (1 + \sin^2 \theta)}{\cos^2 \theta} = 1 + \sin^2 \theta \] ### Step 3: Substitute back into the equation Now, we substitute this back into the original equation: \[ l \cos^2 \theta + m \sin^2 \theta = 1 + \sin^2 \theta \] ### Step 4: Rearranging the equation Rearranging gives: \[ l \cos^2 \theta + m \sin^2 \theta - \sin^2 \theta = 1 \] This simplifies to: \[ l \cos^2 \theta + (m - 1) \sin^2 \theta = 1 \] ### Step 5: Express in terms of tangent Using the identity \(\sin^2 \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta}\) and \(\cos^2 \theta = \frac{1}{1 + \tan^2 \theta}\), we can substitute these into the equation: \[ l \frac{1}{1 + \tan^2 \theta} + (m - 1) \frac{\tan^2 \theta}{1 + \tan^2 \theta} = 1 \] ### Step 6: Clear the denominator Multiply through by \(1 + \tan^2 \theta\): \[ l + (m - 1) \tan^2 \theta = 1 + \tan^2 \theta \] ### Step 7: Rearranging to find \(\tan^2 \theta\) Rearranging gives: \[ (m - 1) \tan^2 \theta - \tan^2 \theta = 1 - l \] This simplifies to: \[ ((m - 1) - 1) \tan^2 \theta = 1 - l \] Thus: \[ (m - 2) \tan^2 \theta = 1 - l \] ### Step 8: Solve for \(\tan^2 \theta\) Finally, we can express \(\tan^2 \theta\): \[ \tan^2 \theta = \frac{1 - l}{m - 2} \] ### Step 9: Take the square root to find \(\tan \theta\) Taking the square root: \[ \tan \theta = \sqrt{\frac{1 - l}{m - 2}} \] ### Final Answer Thus, the value of \(\tan \theta\) is: \[ \tan \theta = \sqrt{\frac{1 - l}{m - 2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise Exercise Base Level Questions|75 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

If l cos^(2) theta + m sin^(2) theta = (cos^(2) theta ("cosec"^(2) theta+1)/("cosec"^(2) theta -1)) then what is the value of tan^(2) theta .

((1+cos theta)^2+ sin^2 theta)/((cosec^2 theta-1) sin^2 theta) =

( 1 + cos theta) ( 1 - cos theta ) cosec^2 theta =

((1+cos theta)^2+ sin^2 theta)/ ((cosec^2 theta-1)sin^2 theta) =?

The value of sin^(2)theta cos^(2)theta(sec^(2)theta+cosec^(2)theta)-1 is

If cosec theta - cot theta = 1/2, 0 lt theta lt pi/2, then cos theta is equal to

(sqrt((cosec^(2)theta-1)))/(cosec theta)=cos theta

Prove that cos^2 theta cosec^2 theta+sin^2 theta=cosec^@ theta

(cos theta)/(cosec theta+1)+(cos theta)/(cosec theta-1)=2tan theta

ARIHANT SSC-TRIGONOMETRY-Higher Skill Level Questions
  1. If sintheta -costheta =0, find the value of sin[pi/2-theta]+cos""(pi/...

    Text Solution

    |

  2. The maximum value of sin^8 theta + cos^14 theta for all real values of...

    Text Solution

    |

  3. If l cos^2 theta + m sin^2 theta =(cos^2 theta (cosec^2theta +1))/(cos...

    Text Solution

    |

  4. DeltaABC is a right angled triangle, where angle ABC = 90^@,If AC = 2s...

    Text Solution

    |

  5. If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10)...

    Text Solution

    |

  6. If a cos theta-b sin theta = c, then find the value of a sin theta + b...

    Text Solution

    |

  7. If tan alpha = n tan beta and sin alpha = m sin beta, then cos^2 alpha...

    Text Solution

    |

  8. If sin theta cos theta = 1//2, then what is sin^6 theta +cos^6 theta e...

    Text Solution

    |

  9. The value of the expression cosec (75^(@)+theta) - sec(15^@)-theta)-ta...

    Text Solution

    |

  10. If cos x + sec x = 2, then what is cos ^(n) x + sec ^(n) x equal to,...

    Text Solution

    |

  11. If alpha and beta are complementary angles, then what is sqrt(cos alph...

    Text Solution

    |

  12. If sin theta + 2cos theta = -1, where 0 lt theta lt pi/2, what is 2 s...

    Text Solution

    |

  13. If sin (A +B) =1, where 0 lt B lt 45^@, what is cos (A -B) equal to ?

    Text Solution

    |

  14. If sin theta + cos theta = sqrt 3, then what is tan theta + cot thet...

    Text Solution

    |

  15. If tan theta + sec theta = m, then what is sec theta equal to ?

    Text Solution

    |

  16. If 5 sin theta + 12 cos theta =13, then what is 5 cos theta -12 sin t...

    Text Solution

    |

  17. Consider the following statements I. tan theta increases faster tha...

    Text Solution

    |

  18. What is ((sin theta +cos theta)(tan theta +cot theta))/(sec theta + co...

    Text Solution

    |

  19. What is ((1 + sec theta-tan theta)costheta)/((1+sec theta+tan theta)(1...

    Text Solution

    |

  20. If x sin theta -y cos theta =sqrt(x^2 +y^2) and cos^2 theta/a^2 +sin^2...

    Text Solution

    |