Home
Class 14
MATHS
DeltaABC is a right angled triangle, whe...

`DeltaABC` is a right angled triangle, where `angle ABC = 90^@`,If `AC = 2sqrt5 and AB - BC =2`, then the value of `cos^2 A - sin^2C` is

A

`1/sqrt5`

B

`sqrt5`

C

`1/2`

D

`3/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the information given in the question and apply the Pythagorean theorem to find the required value. ### Step 1: Define the sides of the triangle Given that triangle ABC is a right-angled triangle with angle ABC = 90°, we can denote: - \( AC = 2\sqrt{5} \) (hypotenuse) - Let \( BC = x \) (one leg) - Then \( AB = x + 2 \) (the other leg, since \( AB - BC = 2 \)) ### Step 2: Apply the Pythagorean theorem According to the Pythagorean theorem: \[ AC^2 = AB^2 + BC^2 \] Substituting the known values: \[ (2\sqrt{5})^2 = (x + 2)^2 + x^2 \] Calculating \( (2\sqrt{5})^2 \): \[ 20 = (x + 2)^2 + x^2 \] ### Step 3: Expand and simplify the equation Expanding \( (x + 2)^2 \): \[ 20 = x^2 + 4x + 4 + x^2 \] Combining like terms: \[ 20 = 2x^2 + 4x + 4 \] Rearranging the equation: \[ 2x^2 + 4x + 4 - 20 = 0 \] \[ 2x^2 + 4x - 16 = 0 \] Dividing the entire equation by 2: \[ x^2 + 2x - 8 = 0 \] ### Step 4: Factor the quadratic equation Factoring the quadratic: \[ (x + 4)(x - 2) = 0 \] Setting each factor to zero gives: \[ x + 4 = 0 \quad \text{or} \quad x - 2 = 0 \] Thus, \( x = -4 \) (not valid for triangle sides) or \( x = 2 \). ### Step 5: Find the lengths of the sides Since \( x = 2 \): - \( BC = 2 \) - \( AB = x + 2 = 2 + 2 = 4 \) ### Step 6: Calculate \( \cos^2 A \) and \( \sin^2 C \) Using the definitions of cosine and sine: - \( \cos A = \frac{AB}{AC} = \frac{4}{2\sqrt{5}} = \frac{2}{\sqrt{5}} \) - \( \sin C = \frac{BC}{AC} = \frac{2}{2\sqrt{5}} = \frac{1}{\sqrt{5}} \) Now, squaring both: \[ \cos^2 A = \left(\frac{2}{\sqrt{5}}\right)^2 = \frac{4}{5} \] \[ \sin^2 C = \left(\frac{1}{\sqrt{5}}\right)^2 = \frac{1}{5} \] ### Step 7: Calculate \( \cos^2 A - \sin^2 C \) Now, we find: \[ \cos^2 A - \sin^2 C = \frac{4}{5} - \frac{1}{5} = \frac{3}{5} \] ### Final Answer Thus, the value of \( \cos^2 A - \sin^2 C \) is: \[ \frac{3}{5} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise Exercise Base Level Questions|75 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

In a right angled DeltaABC if /_B=90^(@),AC=2sqrt(5) and AB-BC=2 then what is the value of cos^(2)A-cos^(2)C ?

In a right-angled triangle ABC, if angle B = 90° , BC = 3 cm and AC = 5 cm, then the length of side AB is

If triangle ABC is a right angled triangle with angle ABC = 90^@ , and AC = 10 cm and BC = 8 cm, then the length of AB is: यदि triangle ABC एक समकोण त्रिभुज है, angle ABC = 90^@ ,AC =10, BC =8 cm फिर AB की लंबाई है:

In a right angled triangle /_B is right angle and AC=2sqrt(5) cm. If AB-BC=2 cm then what is the value of (cos^(2)A-cos^(2)C) ?

DeltaABC is right angle triangle, where angleB=90^(@) . D and E lies on sides AB and BC respectively, find the value of AC^(2)+DE^(2) ?

In a right -angled triangle ABC, right-angled at B, if AB=2sqrt6 and AC-BC=2 , then find sec A+ tan A .

In a right-angled triangle ABC, right angled at B, AB = (x)/(2), BC = x + 2 and AC = x + 3. The value of x is :

In triangle ABC,/_B=90^(@),AC+BC=25 and AB=5, determine the value of sin A,cos A and tan A

In a right-angled triangle ABC, right angled at B, AB = (x)/(2) , BC = x+2 and AC = x+3 . Find value of x.

ARIHANT SSC-TRIGONOMETRY-Higher Skill Level Questions
  1. The maximum value of sin^8 theta + cos^14 theta for all real values of...

    Text Solution

    |

  2. If l cos^2 theta + m sin^2 theta =(cos^2 theta (cosec^2theta +1))/(cos...

    Text Solution

    |

  3. DeltaABC is a right angled triangle, where angle ABC = 90^@,If AC = 2s...

    Text Solution

    |

  4. If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10)...

    Text Solution

    |

  5. If a cos theta-b sin theta = c, then find the value of a sin theta + b...

    Text Solution

    |

  6. If tan alpha = n tan beta and sin alpha = m sin beta, then cos^2 alpha...

    Text Solution

    |

  7. If sin theta cos theta = 1//2, then what is sin^6 theta +cos^6 theta e...

    Text Solution

    |

  8. The value of the expression cosec (75^(@)+theta) - sec(15^@)-theta)-ta...

    Text Solution

    |

  9. If cos x + sec x = 2, then what is cos ^(n) x + sec ^(n) x equal to,...

    Text Solution

    |

  10. If alpha and beta are complementary angles, then what is sqrt(cos alph...

    Text Solution

    |

  11. If sin theta + 2cos theta = -1, where 0 lt theta lt pi/2, what is 2 s...

    Text Solution

    |

  12. If sin (A +B) =1, where 0 lt B lt 45^@, what is cos (A -B) equal to ?

    Text Solution

    |

  13. If sin theta + cos theta = sqrt 3, then what is tan theta + cot thet...

    Text Solution

    |

  14. If tan theta + sec theta = m, then what is sec theta equal to ?

    Text Solution

    |

  15. If 5 sin theta + 12 cos theta =13, then what is 5 cos theta -12 sin t...

    Text Solution

    |

  16. Consider the following statements I. tan theta increases faster tha...

    Text Solution

    |

  17. What is ((sin theta +cos theta)(tan theta +cot theta))/(sec theta + co...

    Text Solution

    |

  18. What is ((1 + sec theta-tan theta)costheta)/((1+sec theta+tan theta)(1...

    Text Solution

    |

  19. If x sin theta -y cos theta =sqrt(x^2 +y^2) and cos^2 theta/a^2 +sin^2...

    Text Solution

    |

  20. 2 cosec^2 23^@ cot^2 67^@ - sin^2 23^@-sin^2 67^@-cot^2 67^@ is equal ...

    Text Solution

    |