Home
Class 14
MATHS
If tan alpha = n tan beta and sin alpha ...

If `tan alpha = n tan beta and sin alpha = m sin beta`, then `cos^2 alpha` is

A

`m^2/n^2`

B

`(m^2-1)/(n^2 -1)`

C

`(m^2 +1)/(n^2 +1)`

D

`m^2/(n^2 +1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos^2 \alpha \) given the equations \( \tan \alpha = n \tan \beta \) and \( \sin \alpha = m \sin \beta \). ### Step-by-step Solution: 1. **Express \( \tan \beta \) and \( \sin \beta \)**: From the first equation, we can express \( \tan \beta \): \[ \tan \beta = \frac{\tan \alpha}{n} \] From the second equation, we can express \( \sin \beta \): \[ \sin \beta = \frac{\sin \alpha}{m} \] 2. **Relate \( \cos \beta \) and \( \sin \beta \)**: We know that \( \cos \beta = \frac{\sin \alpha}{m \tan \beta} \). Using the expression for \( \tan \beta \): \[ \cos \beta = \frac{\sin \alpha}{m \left( \frac{\tan \alpha}{n} \right)} = \frac{n \sin \alpha}{m \tan \alpha} \] 3. **Use the identity \( \cos^2 \beta + \sin^2 \beta = 1 \)**: We can express \( \cos^2 \beta \) in terms of \( \sin \alpha \) and \( \tan \alpha \): \[ \cos^2 \beta = 1 - \sin^2 \beta = 1 - \left( \frac{\sin \alpha}{m} \right)^2 = 1 - \frac{\sin^2 \alpha}{m^2} \] 4. **Substituting \( \tan \beta \)**: We can also express \( \tan^2 \beta \): \[ \tan^2 \beta = \frac{\sin^2 \beta}{\cos^2 \beta} = \frac{\left( \frac{\sin \alpha}{m} \right)^2}{\cos^2 \beta} \] From the first equation, substituting \( \tan \beta \): \[ \tan^2 \beta = \frac{\tan^2 \alpha}{n^2} \] 5. **Relate \( \sin^2 \alpha \) and \( \cos^2 \alpha \)**: Using the identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ \cos^2 \alpha = 1 - \sin^2 \alpha \] 6. **Final expression for \( \cos^2 \alpha \)**: We can relate everything back to \( \cos^2 \alpha \): \[ \cos^2 \alpha = 1 - \frac{m^2 \tan^2 \alpha}{n^2} \] 7. **Substituting back to find \( \cos^2 \alpha \)**: Since \( \tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha} \), we can substitute and simplify to find: \[ \cos^2 \alpha = \frac{m^2 - n^2}{m^2} \] ### Conclusion: Thus, the final expression for \( \cos^2 \alpha \) is: \[ \cos^2 \alpha = \frac{m^2 - n^2}{m^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise Exercise Base Level Questions|75 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

If "tan" alpha= n tan beta and sin alpha =m sin beta prove that : cos^(2)alpha=(m^(2)-1)/(n^(2)-1)

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

If alpha,beta and gamma are angles such that tan alpha+tan beta+tan gamma=tan alpha tan beta tan gamma and x=cos alpha+i sin alpha,y=cos beta+i sin beta and z=cos gamma+i sin gamma then the value of xyz is

Find the value of, cos alpha cos beta, cos alpha sin beta, -no alpha-sin beta, cos beta, 0 sin alpha cos beta, sin alpha sin beta, cos alpha] |

tan (alpha + beta) tan (alpha-beta) = (sin ^ (2) alpha-sin ^ (2) beta) / (cos ^ (2) alpha-sin ^ (2) beta)

If tan theta=(tan alpha+tan beta)/(1+tan alpha tan beta) then show that sin2 theta=(sin2 alpha+sin2 beta)/(1+sin2 alpha sin2 beta)

If sin alpha+sin beta=a and cos alpha+cos beta=b then tan((alpha-beta)/(2)) is equal to

ARIHANT SSC-TRIGONOMETRY-Higher Skill Level Questions
  1. If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10)...

    Text Solution

    |

  2. If a cos theta-b sin theta = c, then find the value of a sin theta + b...

    Text Solution

    |

  3. If tan alpha = n tan beta and sin alpha = m sin beta, then cos^2 alpha...

    Text Solution

    |

  4. If sin theta cos theta = 1//2, then what is sin^6 theta +cos^6 theta e...

    Text Solution

    |

  5. The value of the expression cosec (75^(@)+theta) - sec(15^@)-theta)-ta...

    Text Solution

    |

  6. If cos x + sec x = 2, then what is cos ^(n) x + sec ^(n) x equal to,...

    Text Solution

    |

  7. If alpha and beta are complementary angles, then what is sqrt(cos alph...

    Text Solution

    |

  8. If sin theta + 2cos theta = -1, where 0 lt theta lt pi/2, what is 2 s...

    Text Solution

    |

  9. If sin (A +B) =1, where 0 lt B lt 45^@, what is cos (A -B) equal to ?

    Text Solution

    |

  10. If sin theta + cos theta = sqrt 3, then what is tan theta + cot thet...

    Text Solution

    |

  11. If tan theta + sec theta = m, then what is sec theta equal to ?

    Text Solution

    |

  12. If 5 sin theta + 12 cos theta =13, then what is 5 cos theta -12 sin t...

    Text Solution

    |

  13. Consider the following statements I. tan theta increases faster tha...

    Text Solution

    |

  14. What is ((sin theta +cos theta)(tan theta +cot theta))/(sec theta + co...

    Text Solution

    |

  15. What is ((1 + sec theta-tan theta)costheta)/((1+sec theta+tan theta)(1...

    Text Solution

    |

  16. If x sin theta -y cos theta =sqrt(x^2 +y^2) and cos^2 theta/a^2 +sin^2...

    Text Solution

    |

  17. 2 cosec^2 23^@ cot^2 67^@ - sin^2 23^@-sin^2 67^@-cot^2 67^@ is equal ...

    Text Solution

    |

  18. The value of cot theta.tan (90^@ -theta)-sec(90^@ - theta) cosec theta...

    Text Solution

    |

  19. In a right angled DeltaXYZ, right angled at Y, if XY = 2sqrt6 and XY -...

    Text Solution

    |

  20. The simplidied value of (sec x secy +tan x tany)^2-(sec x tan y + tan ...

    Text Solution

    |