Home
Class 14
MATHS
The value of cot theta.tan (90^@ -theta)...

The value of `cot theta.tan (90^@ -theta)-sec(90^@ - theta) cosec theta+ (sin^2 25^@+sin^2 65^@) +sqrt3(tan 5^@ tan15^@.tan30^@.tan75^@.tan85^@)`is

A

1

B

`-1`

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression step by step, we will break it down into manageable parts and utilize trigonometric identities. ### Given Expression: \[ E = \cot \theta \tan (90^\circ - \theta) - \sec(90^\circ - \theta) \csc \theta + (\sin^2 25^\circ + \sin^2 65^\circ) + \sqrt{3} (\tan 5^\circ \tan 15^\circ \tan 30^\circ \tan 75^\circ \tan 85^\circ) \] ### Step 1: Simplify \(\tan(90^\circ - \theta)\) and \(\sec(90^\circ - \theta)\) Using the identities: - \(\tan(90^\circ - \theta) = \cot \theta\) - \(\sec(90^\circ - \theta) = \csc \theta\) We can rewrite the expression: \[ E = \cot \theta \cdot \cot \theta - \csc \theta \cdot \csc \theta + (\sin^2 25^\circ + \sin^2 65^\circ) + \sqrt{3} (\tan 5^\circ \tan 15^\circ \tan 30^\circ \tan 75^\circ \tan 85^\circ) \] \[ E = \cot^2 \theta - \csc^2 \theta + (\sin^2 25^\circ + \sin^2 65^\circ) + \sqrt{3} (\tan 5^\circ \tan 15^\circ \tan 30^\circ \tan 75^\circ \tan 85^\circ) \] ### Step 2: Use the identity \(\cot^2 \theta - \csc^2 \theta = -1\) We know that: \[ \cot^2 \theta - \csc^2 \theta = -1 \] Thus, we can substitute this into our expression: \[ E = -1 + (\sin^2 25^\circ + \sin^2 65^\circ) + \sqrt{3} (\tan 5^\circ \tan 15^\circ \tan 30^\circ \tan 75^\circ \tan 85^\circ) \] ### Step 3: Simplify \(\sin^2 25^\circ + \sin^2 65^\circ\) Using the identity \(\sin(90^\circ - x) = \cos x\): \[ \sin^2 65^\circ = \cos^2 25^\circ \] Thus: \[ \sin^2 25^\circ + \sin^2 65^\circ = \sin^2 25^\circ + \cos^2 25^\circ = 1 \] ### Step 4: Substitute back into the expression Now substituting back: \[ E = -1 + 1 + \sqrt{3} (\tan 5^\circ \tan 15^\circ \tan 30^\circ \tan 75^\circ \tan 85^\circ) \] \[ E = \sqrt{3} (\tan 5^\circ \tan 15^\circ \tan 30^\circ \tan 75^\circ \tan 85^\circ) \] ### Step 5: Simplify \(\tan 75^\circ\) and \(\tan 85^\circ\) Using the identities: - \(\tan 75^\circ = \cot 15^\circ\) - \(\tan 85^\circ = \cot 5^\circ\) Thus: \[ E = \sqrt{3} (\tan 5^\circ \tan 15^\circ \tan 30^\circ \cot 15^\circ \cot 5^\circ) \] \[ E = \sqrt{3} (\tan 30^\circ) \] ### Step 6: Evaluate \(\tan 30^\circ\) We know: \[ \tan 30^\circ = \frac{1}{\sqrt{3}} \] Thus: \[ E = \sqrt{3} \cdot \frac{1}{\sqrt{3}} = 1 \] ### Final Answer: \[ E = 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.1|5 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise Exercise Base Level Questions|75 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

cot theta tan(90^@-theta)-sec(90^@-theta)cosec theta+sqrt3 tan12^@ tan 60^@ tan78^@=2

Without using trigonometric table, the value of cotthetatan(90^(@)-theta)-sec(90^(@)-theta)"cosec"theta+sin^(2)65^(@)+sin^(2)25^(@)+sqrt3tan5^(@)tan85^(@) .

Knowledge Check

  • The value of cottheta.tan(90^(@)-theta)-sec(90^(@)-theta)cosectheta+(sin^(2)25^(@)+sin^(2)65^(@)) is

    A
    1
    B
    `-1`
    C
    2
    D
    0
  • The value of - tan theta cot (90^@ - theta) + sec theta cosec (90^@ - theta) (+ sin^2 55^@ + cos^2 55^@)/(tan 10^@ tan20^@ tan30^@ tan70^@ tan80^@)

    A
    `2/sqrt3`
    B
    `sqrt3/2`
    C
    `-1/sqrt3`
    D
    `sqrt3`
  • The value of - tan theta cot (90^@ - theta) + sec theta cosec (90^@ - theta) (+ sin^2 55^@ + cos^2 55^@)/(tan 10^@ tan20^@ tan30^@ tan70^@ tan80^@)

    A
    `2/sqrt3`
    B
    `sqrt3/2`
    C
    `-1/sqrt3`
    D
    `sqrt3`
  • Similar Questions

    Explore conceptually related problems

    Evaluate : sin^(2)25^(@)+sin^(2)65^(@)+sqrt(3)tan5^(@)tan15^(@)tan30^(@)tan75^(@)tan85^(@)

    tan theta+(1)/(tan theta)=sec theta cosec theta

    tan theta+tan(90^(@)-theta)=sec theta xx sec(90^(@)-theta)

    The value of tan(180+theta).tan (90-theta) is :

    tan^(2)(90^(@) - theta) - cosec^(2) theta =