Home
Class 14
MATHS
If x = 2^(1//3) + 2^(-1//3), then the va...

If `x = 2^(1//3) + 2^(-1//3)`, then the value of `2x^3` is:

A

`6x + 5`

B

`5x + 6`

C

`6x -5`

D

`5x -6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = 2^{1/3} + 2^{-1/3} \) and we need to find the value of \( 2x^3 \), we will follow these steps: ### Step 1: Define \( x \) Let: \[ x = 2^{1/3} + 2^{-1/3} \] ### Step 2: Cube \( x \) To find \( x^3 \), we can use the identity for the cube of a sum: \[ (a + b)^3 = a^3 + b^3 + 3ab(a + b) \] Here, let \( a = 2^{1/3} \) and \( b = 2^{-1/3} \). Thus, \[ x^3 = (2^{1/3} + 2^{-1/3})^3 = (2^{1/3})^3 + (2^{-1/3})^3 + 3(2^{1/3})(2^{-1/3})(2^{1/3} + 2^{-1/3}) \] ### Step 3: Calculate \( a^3 \) and \( b^3 \) Calculating \( a^3 \) and \( b^3 \): \[ (2^{1/3})^3 = 2 \quad \text{and} \quad (2^{-1/3})^3 = \frac{1}{2} \] Thus, \[ a^3 + b^3 = 2 + \frac{1}{2} = \frac{5}{2} \] ### Step 4: Calculate \( ab \) Next, we calculate \( ab \): \[ ab = 2^{1/3} \cdot 2^{-1/3} = 2^{(1/3 - 1/3)} = 2^0 = 1 \] ### Step 5: Substitute back into the cube formula Now substituting back into the cube formula: \[ x^3 = \frac{5}{2} + 3(1)(x) = \frac{5}{2} + 3x \] ### Step 6: Rearranging the equation Rearranging gives us: \[ x^3 - 3x - \frac{5}{2} = 0 \] ### Step 7: Multiply the entire equation by 2 To eliminate the fraction, multiply the entire equation by 2: \[ 2x^3 - 6x - 5 = 0 \] ### Step 8: Solve for \( 2x^3 \) From the equation, we can express \( 2x^3 \): \[ 2x^3 = 6x + 5 \] ### Conclusion Thus, the value of \( 2x^3 \) is: \[ \boxed{6x + 5} \]
Promotional Banner

Topper's Solved these Questions

  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.6|5 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.7|12 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.4|11 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • GEOMETRY

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|52 Videos

Similar Questions

Explore conceptually related problems

If x = 2^(1//3) + 2^(-1//3) then the value of 2x^3 - 6x will be :

If x=2^((1)/(3)) +2^(-(1)/(3)) , then the value of 2x^(3) -6x-5 is equal to

If x=2^(1//3)-2^(-1//3) then what is the value of 2x^(3)+6x ?

If x=1+2^(1/3)+2^(2/3) , then the value of x^3- 3x^2- 3x -1 is____

if x=2^((1)/(3))+2^(-(1)/(3)) then find out the value of 2x^(3)

If x=2+2^((2)/(3))+2^((1)/(3)), then the value of x^(3)-6x^(2)+6x is:

If (5x)/3 - 7/2 ((2x)/5 - 1/3) = 1/3 , then the value of x is ________