Home
Class 14
MATHS
The last three digits in the binary repr...

The last three digits in the binary representation of `(365247728)_(10)` is :

A

`000`

B

`100`

C

`110`

D

`010`

Text Solution

AI Generated Solution

The correct Answer is:
To find the last three digits in the binary representation of the decimal number \( (365247728)_{10} \), we can follow these steps: ### Step 1: Convert the Decimal Number to Binary To convert a decimal number to binary, we can repeatedly divide the number by 2 and keep track of the remainders. The binary representation is formed by the remainders read in reverse order. ### Step 2: Perform the Division Let's divide \( 365247728 \) by \( 2 \) and keep track of the remainders: 1. \( 365247728 \div 2 = 182623864 \) remainder \( 0 \) 2. \( 182623864 \div 2 = 91311932 \) remainder \( 0 \) 3. \( 91311932 \div 2 = 45655966 \) remainder \( 0 \) 4. \( 45655966 \div 2 = 22827983 \) remainder \( 0 \) 5. \( 22827983 \div 2 = 11413991 \) remainder \( 1 \) 6. \( 11413991 \div 2 = 5706995 \) remainder \( 1 \) 7. \( 5706995 \div 2 = 2853497 \) remainder \( 1 \) 8. \( 2853497 \div 2 = 1426748 \) remainder \( 1 \) 9. \( 1426748 \div 2 = 713374 \) remainder \( 0 \) 10. \( 713374 \div 2 = 356687 \) remainder \( 0 \) 11. \( 356687 \div 2 = 178343 \) remainder \( 1 \) 12. \( 178343 \div 2 = 89171 \) remainder \( 1 \) 13. \( 89171 \div 2 = 44585 \) remainder \( 1 \) 14. \( 44585 \div 2 = 22292 \) remainder \( 1 \) 15. \( 22292 \div 2 = 11146 \) remainder \( 0 \) 16. \( 11146 \div 2 = 5573 \) remainder \( 0 \) 17. \( 5573 \div 2 = 2786 \) remainder \( 1 \) 18. \( 2786 \div 2 = 1393 \) remainder \( 0 \) 19. \( 1393 \div 2 = 696 \) remainder \( 1 \) 20. \( 696 \div 2 = 348 \) remainder \( 0 \) 21. \( 348 \div 2 = 174 \) remainder \( 0 \) 22. \( 174 \div 2 = 87 \) remainder \( 0 \) 23. \( 87 \div 2 = 43 \) remainder \( 1 \) 24. \( 43 \div 2 = 21 \) remainder \( 1 \) 25. \( 21 \div 2 = 10 \) remainder \( 1 \) 26. \( 10 \div 2 = 5 \) remainder \( 0 \) 27. \( 5 \div 2 = 2 \) remainder \( 1 \) 28. \( 2 \div 2 = 1 \) remainder \( 0 \) 29. \( 1 \div 2 = 0 \) remainder \( 1 \) ### Step 3: Collect the Remainders Now, we collect the remainders from the last division to the first: - Reading from bottom to top, the binary representation of \( 365247728 \) is \( 101011111110011111110000000 \). ### Step 4: Identify the Last Three Digits The last three digits of the binary representation \( 101011111110011111110000000 \) are \( 000 \). ### Final Answer Thus, the last three digits in the binary representation of \( (365247728)_{10} \) are \( 000 \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNDAMENTALS

    ARIHANT SSC|Exercise PRACTICE EXERCISE|60 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise EXERCISE - MISCELLANEOUS|140 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.6|5 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • GEOMETRY

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|52 Videos

Similar Questions

Explore conceptually related problems

The last three digits in 10! are:

The last four digits in the binary representation of (8009)_(10) is :

The last digit in the decimal representation of ((1)/(5))^(2000) is

The last digit in the decimal representation of ((1)/(5))^(2000) is (a) 2 (b) 4 (c) 5 (d) 6

The last digit in the decimal representation of ((1)/(5))^(2000) is (a) 2 (b) 4 (c) 5 (d) 6

The last digit in 3^(6) is

The unit's digit in the (decimal) representation of 11^(132) is

Find the last three digits in 11^(50)