Home
Class 14
MATHS
If (25)(n) xx (31)(n) = (1015)(n) then t...

If `(25)_(n) xx (31)_(n) = (1015)_(n)` then the value of `(13)_(n) xx (52)_(n)` is when `n > 0` :

A

`a. (626)_(4)`

B

b.`(462)_(n)`

C

c. `(716)_(n) `

D

d. `(676)_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( n \) such that \( (25)_n \times (31)_n = (1015)_n \), and then use that \( n \) to calculate \( (13)_n \times (52)_n \). ### Step 1: Convert the numbers from base \( n \) to decimal 1. Convert \( (25)_n \): \[ (25)_n = 2n + 5 \] 2. Convert \( (31)_n \): \[ (31)_n = 3n + 1 \] 3. Convert \( (1015)_n \): \[ (1015)_n = 1n^3 + 0n^2 + 1n + 5 = n^3 + n + 5 \] ### Step 2: Set up the equation We have: \[ (2n + 5)(3n + 1) = n^3 + n + 5 \] ### Step 3: Expand the left-hand side Expanding \( (2n + 5)(3n + 1) \): \[ = 6n^2 + 2n + 15n + 5 = 6n^2 + 17n + 5 \] ### Step 4: Set the equation Now we set the expanded left-hand side equal to the right-hand side: \[ 6n^2 + 17n + 5 = n^3 + n + 5 \] ### Step 5: Rearrange the equation Rearranging gives us: \[ n^3 - 6n^2 - 16n = 0 \] ### Step 6: Factor out \( n \) Factoring out \( n \): \[ n(n^2 - 6n - 16) = 0 \] This gives us one solution \( n = 0 \) (which we discard since \( n > 0 \)) and a quadratic equation: \[ n^2 - 6n - 16 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ n = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot (-16)}}{2 \cdot 1} \] \[ = \frac{6 \pm \sqrt{36 + 64}}{2} \] \[ = \frac{6 \pm \sqrt{100}}{2} \] \[ = \frac{6 \pm 10}{2} \] This gives us two potential solutions: \[ n = \frac{16}{2} = 8 \quad \text{and} \quad n = \frac{-4}{2} = -2 \quad (\text{discarded}) \] ### Step 8: Calculate \( (13)_n \times (52)_n \) Now we use \( n = 8 \): 1. Convert \( (13)_n \): \[ (13)_8 = 1 \cdot 8 + 3 = 8 + 3 = 11 \] 2. Convert \( (52)_n \): \[ (52)_8 = 5 \cdot 8 + 2 = 40 + 2 = 42 \] ### Step 9: Multiply the two results Now we multiply: \[ (13)_8 \times (52)_8 = 11 \times 42 = 462 \] ### Final Result Thus, the value of \( (13)_n \times (52)_n \) when \( n = 8 \) is \( 462 \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNDAMENTALS

    ARIHANT SSC|Exercise PRACTICE EXERCISE|60 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise EXERCISE - MISCELLANEOUS|140 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 1.6|5 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • GEOMETRY

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|52 Videos

Similar Questions

Explore conceptually related problems

When (m/n) = 25(n/m) , Then the value of m : n is :

If (n+3)! =56xx(n+1)! , find the value of n.

If (n+1)! =12xx(n-1)! , find the value of n.

If 16^(n+1) = 64 xx 4^(-n) , the value of n is

For what value of n,2^(n)xx5^(n) ends in 5

If n_(C_12)=n_(C_13) then find the value of the 25_(C_n)

Find the value of (3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1)) .

If 9 xx 3^(n)=3^(6), find the value of n.

If 2^(n-7) xx 5^(n-4)=1250, find the value of n.