Home
Class 14
MATHS
Find the value of tan75^(@):...

Find the value of `tan75^(@)`:

A

`(sqrt3+2)`

B

`(sqrt3)/(2+sqrt2)`

C

`(sqrt3-1)/(2sqrt2)`

D

`(2+sqrt2)/(sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 75^\circ \), we can use the angle addition formula for tangent. We can express \( 75^\circ \) as \( 45^\circ + 30^\circ \). ### Step 1: Use the angle addition formula for tangent The formula for \( \tan(a + b) \) is given by: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] Here, let \( a = 45^\circ \) and \( b = 30^\circ \). ### Step 2: Substitute the values of \( \tan 45^\circ \) and \( \tan 30^\circ \) We know: \[ \tan 45^\circ = 1 \quad \text{and} \quad \tan 30^\circ = \frac{1}{\sqrt{3}} \] Now substituting these values into the formula: \[ \tan 75^\circ = \frac{\tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} \] ### Step 3: Simplify the numerator and denominator The numerator becomes: \[ 1 + \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{\sqrt{3} + 1}{\sqrt{3}} \] The denominator becomes: \[ 1 - \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}} \] ### Step 4: Substitute back into the formula Now substituting back into the formula: \[ \tan 75^\circ = \frac{\frac{\sqrt{3} + 1}{\sqrt{3}}}{\frac{\sqrt{3} - 1}{\sqrt{3}}} \] This simplifies to: \[ \tan 75^\circ = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] ### Step 5: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by \( \sqrt{3} + 1 \): \[ \tan 75^\circ = \frac{(\sqrt{3} + 1)(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{(\sqrt{3} + 1)^2}{3 - 1} \] This gives: \[ \tan 75^\circ = \frac{3 + 2\sqrt{3} + 1}{2} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] ### Final Result Thus, the value of \( \tan 75^\circ \) is: \[ \tan 75^\circ = 2 + \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan15^(@)

Find the value of tan 75^(@) .

Find the value of tan70^(@) .

Find the value of tan15^(@) .

Find the value of tan22.5^(@)

Find the value of tan22.5^(@)

Find the value of: sin75^(@)

Find the value of tan210^(@)