Home
Class 14
MATHS
If cosA=(3)/(5) and sinB=(5)/(13), find...

If `cosA=(3)/(5) and sinB=(5)/(13)`, find the value of `(tanA+tanB)/(1-tanAtanB)` :

A

`(63)/(16)`

B

`(36)/(16)`

C

`(61)/(36)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\tan A + \tan B) / (1 - \tan A \tan B)\) given that \(\cos A = \frac{3}{5}\) and \(\sin B = \frac{5}{13}\). ### Step 1: Find \(\tan A\) Given \(\cos A = \frac{3}{5}\), we can find \(\sin A\) using the Pythagorean identity: \[ \sin^2 A + \cos^2 A = 1 \] Substituting the value of \(\cos A\): \[ \sin^2 A + \left(\frac{3}{5}\right)^2 = 1 \] \[ \sin^2 A + \frac{9}{25} = 1 \] \[ \sin^2 A = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \] Taking the square root: \[ \sin A = \frac{4}{5} \quad (\text{since } A \text{ is in the first quadrant}) \] Now, we can find \(\tan A\): \[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] ### Step 2: Find \(\tan B\) Given \(\sin B = \frac{5}{13}\), we can find \(\cos B\) using the Pythagorean identity: \[ \sin^2 B + \cos^2 B = 1 \] Substituting the value of \(\sin B\): \[ \left(\frac{5}{13}\right)^2 + \cos^2 B = 1 \] \[ \frac{25}{169} + \cos^2 B = 1 \] \[ \cos^2 B = 1 - \frac{25}{169} = \frac{169}{169} - \frac{25}{169} = \frac{144}{169} \] Taking the square root: \[ \cos B = \frac{12}{13} \quad (\text{since } B \text{ is in the first quadrant}) \] Now, we can find \(\tan B\): \[ \tan B = \frac{\sin B}{\cos B} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \] ### Step 3: Substitute \(\tan A\) and \(\tan B\) into the expression Now we substitute \(\tan A\) and \(\tan B\) into the expression: \[ \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{\frac{4}{3} + \frac{5}{12}}{1 - \left(\frac{4}{3} \cdot \frac{5}{12}\right)} \] ### Step 4: Simplify the numerator To add \(\frac{4}{3}\) and \(\frac{5}{12}\), we need a common denominator: \[ \frac{4}{3} = \frac{16}{12} \] Thus, \[ \frac{4}{3} + \frac{5}{12} = \frac{16}{12} + \frac{5}{12} = \frac{21}{12} \] ### Step 5: Simplify the denominator Now calculate \(\tan A \tan B\): \[ \tan A \tan B = \frac{4}{3} \cdot \frac{5}{12} = \frac{20}{36} = \frac{5}{9} \] Now substitute into the denominator: \[ 1 - \tan A \tan B = 1 - \frac{5}{9} = \frac{9}{9} - \frac{5}{9} = \frac{4}{9} \] ### Step 6: Final calculation Now substituting back into the expression: \[ \frac{\frac{21}{12}}{\frac{4}{9}} = \frac{21}{12} \cdot \frac{9}{4} = \frac{21 \cdot 9}{12 \cdot 4} = \frac{189}{48} \] Now simplify \(\frac{189}{48}\): \[ \frac{189 \div 3}{48 \div 3} = \frac{63}{16} \] Thus, the final answer is: \[ \frac{63}{16} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

If sinA=(3)/(5)andcosB=(12)/(13) ,what is the value of (tanA-tanB)/(1+tanAtanB) ,it being given that A and B are acute angles ?

If A+B=45^(@) , find the valueof tanA+tanB+tanA tanB :

If tanA=m/(m-1) and tanB=1/(2m-1) , find the value of (tanA-B) .

If A+B=45^(@) , then find the value of tanA+tanB+tanA tanB .

If cosA = 5/13 , find the value of tan A + cot A

Find the value of tanA+tanB+tanC , if A+B+C=pi :

Find the value of (tanA+secA-1)cosA .

If sinA+cosA=(3)/(5) , then find the value of sinA-cosA .

If A and B are supplementary angles then find the value of (tanA+tanB)/(1-tanAtanB)

If cosA=7/25 , find the value of tanA+cotA