Home
Class 14
MATHS
Find the value of sin^(2)(120^(@)-A)+s...

Find the value of
`sin^(2)(120^(@)-A)+sin^(2)A+sin^(2)(120^(@)+A):`

A

`(2)/(3)`

B

`(3)/(2)`

C

`(5)/(2)`

D

`(sqrt3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \sin^2(120^\circ - A) + \sin^2 A + \sin^2(120^\circ + A) \] ### Step-by-Step Solution: **Step 1: Use the sine angle subtraction and addition formulas.** The sine of an angle can be expressed using the formulas: - \(\sin(a - b) = \sin a \cos b - \cos a \sin b\) - \(\sin(a + b) = \sin a \cos b + \cos a \sin b\) Applying these formulas: \[ \sin(120^\circ - A) = \sin 120^\circ \cos A - \cos 120^\circ \sin A \] \[ \sin(120^\circ + A) = \sin 120^\circ \cos A + \cos 120^\circ \sin A \] **Step 2: Substitute the values of \(\sin 120^\circ\) and \(\cos 120^\circ\).** We know: - \(\sin 120^\circ = \sin(180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}\) - \(\cos 120^\circ = \cos(180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2}\) Substituting these values into the equations: \[ \sin(120^\circ - A) = \frac{\sqrt{3}}{2} \cos A + \frac{1}{2} \sin A \] \[ \sin(120^\circ + A) = \frac{\sqrt{3}}{2} \cos A - \frac{1}{2} \sin A \] **Step 3: Square the sine terms.** Now we calculate \(\sin^2(120^\circ - A)\) and \(\sin^2(120^\circ + A)\): \[ \sin^2(120^\circ - A) = \left(\frac{\sqrt{3}}{2} \cos A + \frac{1}{2} \sin A\right)^2 \] \[ = \frac{3}{4} \cos^2 A + \frac{\sqrt{3}}{2} \cos A \sin A + \frac{1}{4} \sin^2 A \] \[ \sin^2(120^\circ + A) = \left(\frac{\sqrt{3}}{2} \cos A - \frac{1}{2} \sin A\right)^2 \] \[ = \frac{3}{4} \cos^2 A - \frac{\sqrt{3}}{2} \cos A \sin A + \frac{1}{4} \sin^2 A \] **Step 4: Combine all terms.** Now, we add all three squared terms: \[ \sin^2(120^\circ - A) + \sin^2 A + \sin^2(120^\circ + A) \] Substituting the squared values: \[ = \left(\frac{3}{4} \cos^2 A + \frac{\sqrt{3}}{2} \cos A \sin A + \frac{1}{4} \sin^2 A\right) + \sin^2 A + \left(\frac{3}{4} \cos^2 A - \frac{\sqrt{3}}{2} \cos A \sin A + \frac{1}{4} \sin^2 A\right) \] Combining like terms: \[ = \frac{3}{4} \cos^2 A + \frac{3}{4} \cos^2 A + \frac{1}{4} \sin^2 A + \frac{1}{4} \sin^2 A + \left(\frac{\sqrt{3}}{2} \cos A \sin A - \frac{\sqrt{3}}{2} \cos A \sin A\right) \] This simplifies to: \[ = \frac{3}{2} \cos^2 A + \frac{1}{2} \sin^2 A \] **Step 5: Use the Pythagorean identity.** Using the identity \(\cos^2 A + \sin^2 A = 1\): \[ = \frac{3}{2} \cos^2 A + \frac{1}{2} (1 - \cos^2 A) \] \[ = \frac{3}{2} \cos^2 A + \frac{1}{2} - \frac{1}{2} \cos^2 A \] \[ = \frac{2}{2} \cos^2 A + \frac{1}{2} = \cos^2 A + \frac{1}{2} \] **Final Step: Conclusion.** Thus, the value of the expression is: \[ \frac{3}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

Find the value of: sin120^(@)

Find the value of sin120^(@) .

Knowledge Check

  • Find the value of sin^(2)5^(@)+ sin^(2)10^(@)+ sin^(2)15^(@)+* * * +sin^(2)90^(@) .

    A
    8
    B
    9
    C
    `(17)/(2)`
    D
    `(19)/(2)`
  • Find the value of sin1^(@).sin2^(@).sin3^(@)…sin180^(@) .

    A
    `-1`
    B
    0
    C
    1
    D
    `alpha`
  • Find the value of sin^(2)1^(@)+sin^(2)2^(@)+sin^(2)3^(@)+ ----+sin^(2)87^(@)+sin^(2)88^(@)+sin^(2)89^(@)+sin^(2)90^(@) .

    A
    `44(1)/(2)`
    B
    44
    C
    `45(1)/(2)`
    D
    N.O.T.
  • Similar Questions

    Explore conceptually related problems

    Find the value of sin^(-1)(sin(2 pi)/(3))

    Find the value of (sin^2 33^@ + sin^2 57^@)

    Find the value of sin^(-1)(sin((2pi)/3))

    Given that sin30^(@)=1//2 and cos 30^(@)=sqrt3//2 . Determine the values of sin 60^(@), sin 120^(@), sin 240^(@), sin 300^(@) , and sin (-30^(@)) .

    Find the value of sin37(1/2)^(@).sin7 (1/2)^(@)