Home
Class 14
MATHS
If cos(alpha+beta)=(4)/(5) and sin(alpha...

If `cos(alpha+beta)=(4)/(5)` and `sin(alpha-beta)=(5)/(13) and alpha, beta` lie between `0^(@) and 45^(@)`, find the value of `tan 2alpha`:

A

`(56)/(63)`

B

`(56)/(33)`

C

`(25)/(33)`

D

`(65)/(63)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 2\alpha \), we will use the given information: 1. \( \cos(\alpha + \beta) = \frac{4}{5} \) 2. \( \sin(\alpha - \beta) = \frac{5}{13} \) We will follow these steps: ### Step 1: Find \( \tan(\alpha + \beta) \) Using the identity \( \cos(\theta) = \frac{\text{base}}{\text{hypotenuse}} \), we can create a right triangle for \( \alpha + \beta \). - Hypotenuse = 5 - Base = 4 To find the perpendicular side, we use the Pythagorean theorem: \[ \text{Perpendicular} = \sqrt{(\text{Hypotenuse})^2 - (\text{Base})^2} = \sqrt{5^2 - 4^2} = \sqrt{25 - 16} = \sqrt{9} = 3 \] Now, we can find \( \tan(\alpha + \beta) \): \[ \tan(\alpha + \beta) = \frac{\text{Perpendicular}}{\text{Base}} = \frac{3}{4} \] ### Step 2: Find \( \tan(\alpha - \beta) \) Using the identity \( \sin(\theta) = \frac{\text{perpendicular}}{\text{hypotenuse}} \), we can create a right triangle for \( \alpha - \beta \). - Hypotenuse = 13 - Perpendicular = 5 To find the base side, we again use the Pythagorean theorem: \[ \text{Base} = \sqrt{(\text{Hypotenuse})^2 - (\text{Perpendicular})^2} = \sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12 \] Now, we can find \( \tan(\alpha - \beta) \): \[ \tan(\alpha - \beta) = \frac{\text{Perpendicular}}{\text{Base}} = \frac{5}{12} \] ### Step 3: Use the formula for \( \tan(2\alpha) \) We can use the formula: \[ \tan(2\alpha) = \frac{\tan(\alpha + \beta) + \tan(\alpha - \beta)}{1 - \tan(\alpha + \beta) \tan(\alpha - \beta)} \] Substituting the values we found: \[ \tan(2\alpha) = \frac{\frac{3}{4} + \frac{5}{12}}{1 - \left(\frac{3}{4} \cdot \frac{5}{12}\right)} \] ### Step 4: Simplify the numerator To add \( \frac{3}{4} \) and \( \frac{5}{12} \), we need a common denominator. The least common multiple of 4 and 12 is 12. \[ \frac{3}{4} = \frac{9}{12} \] Now we can add: \[ \frac{9}{12} + \frac{5}{12} = \frac{14}{12} \] ### Step 5: Simplify the denominator Now calculate the denominator: \[ 1 - \left(\frac{3}{4} \cdot \frac{5}{12}\right) = 1 - \frac{15}{48} \] Convert 1 to have a denominator of 48: \[ 1 = \frac{48}{48} \] Now, subtract: \[ \frac{48}{48} - \frac{15}{48} = \frac{33}{48} \] ### Step 6: Combine the results Now we have: \[ \tan(2\alpha) = \frac{\frac{14}{12}}{\frac{33}{48}} = \frac{14}{12} \cdot \frac{48}{33} \] ### Step 7: Simplify the fraction Calculating this gives: \[ \tan(2\alpha) = \frac{14 \cdot 48}{12 \cdot 33} = \frac{672}{396} \] Now simplify \( \frac{672}{396} \): \[ \frac{672 \div 12}{396 \div 12} = \frac{56}{33} \] Thus, the final answer is: \[ \tan(2\alpha) = \frac{56}{33} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

cos(alpha-beta)=(3)/(5),sin(alpha+beta)=(5)/(13) then tan2 alpha

If cos(alpha+beta)=(4)/(5);sin(alpha-beta)=(5)/(13) and alpha,beta lie between 0&(pi)/(4) then find the value of tan2 alpha

If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha lie between 0 and (pi)/(4) , then find that value of tan2alpha .

If cos(alpha+beta)=4/5, sin(alpha-beta)=5/13and alpha, beta between 0 and (pi)/(4),then tan 2 alpha=

If sin(alpha+beta)=(4)/(5), sin(alpha-beta)=(5)/(13) , find the value of tan 2alpha :