Home
Class 14
MATHS
Find the value of (sin75^(@)+sin15^(@))/...

Find the value of `(sin75^(@)+sin15^(@))/(cos75^(@)+cos15^(@))` :

A

1

B

2

C

`(sqrt3)/(2)`

D

can't be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sin 75^\circ + \sin 15^\circ) / (\cos 75^\circ + \cos 15^\circ)\), we can use the sum-to-product identities for sine and cosine. ### Step-by-Step Solution: 1. **Apply the Sum-to-Product Identity for Sine:** The formula for the sum of sines is: \[ \sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Here, let \(A = 75^\circ\) and \(B = 15^\circ\): \[ \sin 75^\circ + \sin 15^\circ = 2 \sin\left(\frac{75^\circ + 15^\circ}{2}\right) \cos\left(\frac{75^\circ - 15^\circ}{2}\right) \] Simplifying this gives: \[ \sin 75^\circ + \sin 15^\circ = 2 \sin(45^\circ) \cos(30^\circ) \] 2. **Calculate \(\sin(45^\circ)\) and \(\cos(30^\circ)\):** We know: \[ \sin(45^\circ) = \frac{\sqrt{2}}{2}, \quad \cos(30^\circ) = \frac{\sqrt{3}}{2} \] Therefore: \[ \sin 75^\circ + \sin 15^\circ = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2} \] 3. **Apply the Sum-to-Product Identity for Cosine:** The formula for the sum of cosines is: \[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Using the same values for \(A\) and \(B\): \[ \cos 75^\circ + \cos 15^\circ = 2 \cos\left(\frac{75^\circ + 15^\circ}{2}\right) \cos\left(\frac{75^\circ - 15^\circ}{2}\right) \] This simplifies to: \[ \cos 75^\circ + \cos 15^\circ = 2 \cos(45^\circ) \cos(30^\circ) \] 4. **Calculate \(\cos(45^\circ)\) and \(\cos(30^\circ)\):** We know: \[ \cos(45^\circ) = \frac{\sqrt{2}}{2}, \quad \cos(30^\circ) = \frac{\sqrt{3}}{2} \] Therefore: \[ \cos 75^\circ + \cos 15^\circ = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2} \] 5. **Combine the Results:** Now we can substitute back into our original expression: \[ \frac{\sin 75^\circ + \sin 15^\circ}{\cos 75^\circ + \cos 15^\circ} = \frac{\frac{\sqrt{6}}{2}}{\frac{\sqrt{6}}{2}} = 1 \] ### Final Answer: Thus, the value of \(\frac{\sin 75^\circ + \sin 15^\circ}{\cos 75^\circ + \cos 15^\circ}\) is \(1\).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

Find the values of sin75^(@) .

Simplify (sin75^(@)-sin15^(@))/(cos75^(@)+cos15^(@))

sin75^(@)-sin15^(@)=cos105^(@)+cos15^(@)

Write the value of 2sin 75^(@) sin15^(@)

Find the value of cos 75^@

Find the value of sin 15^@+ cos 15^@

Find the value of :(i)sin75^(@) (ii) tan15^(@)