Home
Class 14
MATHS
cos20^(@).cos40^(@).cos60^(@).cos80^(@) ...

`cos20^(@).cos40^(@).cos60^(@).cos80^(@)` is :

A

`(1)/(16)`

B

`(1)/(50)`

C

`(1)/(24)`

D

`(1)/(25)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 60^\circ \cdot \cos 80^\circ \), we can follow these steps: ### Step 1: Rewrite the expression We can rewrite the expression as: \[ \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 60^\circ \cdot \cos 80^\circ \] Notice that \( \cos 60^\circ \) is a known value. ### Step 2: Substitute the known value We know that: \[ \cos 60^\circ = \frac{1}{2} \] So, we can substitute this into our expression: \[ \cos 20^\circ \cdot \cos 40^\circ \cdot \frac{1}{2} \cdot \cos 80^\circ \] ### Step 3: Use the cosine angle subtraction and addition identities Next, we can express \( \cos 40^\circ \) and \( \cos 80^\circ \) in terms of \( \cos 20^\circ \): - \( \cos 40^\circ = \cos(60^\circ - 20^\circ) \) - \( \cos 80^\circ = \cos(60^\circ + 20^\circ) \) ### Step 4: Apply the product-to-sum formula Using the identity: \[ \cos A \cdot \cos B = \frac{1}{2} \left( \cos(A + B) + \cos(A - B) \right) \] we can apply it to \( \cos 20^\circ \cdot \cos 40^\circ \) and \( \cos 80^\circ \): \[ \cos 20^\circ \cdot \cos 40^\circ = \frac{1}{2} \left( \cos(60^\circ) + \cos(-20^\circ) \right) = \frac{1}{2} \left( \frac{1}{2} + \cos 20^\circ \right) \] ### Step 5: Combine the results Now we can write: \[ \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \frac{1}{2} \cdot \frac{1}{2} \left( \frac{1}{2} + \cos 20^\circ \right) \] Now, we need to find \( \cos 20^\circ \cdot \cos 80^\circ \) using the same identity. ### Step 6: Final calculation Putting it all together: \[ \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 60^\circ \cdot \cos 80^\circ = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} \] Thus, the final result is: \[ \frac{1}{16} \] ### Final Answer The value of \( \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 60^\circ \cdot \cos 80^\circ \) is \( \frac{1}{16} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

The value of cos 20^(@) cos 40^(@)cos 60^(@) cos 80^(@) is equal to

Prove that: i) cos10^(@)cos30^(@)cos50^(@)cos70^(@)=3/16 ii) cos20^(@)cos40^(@)cos60^(@)cos80^(@)=1/16 iii) 4cos12^(@)cos48^(@)cos72^(@)=cos36^(@) iv) cos40^(@) cos80^(@)cos160^(@)=-1/8

4cos6^(@)cos42^(@)cos60^(@)cos78^(@)=

A=cos20^(@)cos40^(@)cos60^(@)cos80^(@),B=cos60cos42^(@)cos66^(@)cos78^(@) and C=cos36^(@)cos72^(@)cos108^(@)cos144^(@) then

The value of cos20^(@)cos100^(@)+cos100^(@)cos140^(@)-cos140^(@)cos200^(@) is equal to

cos 20^(@) cos 40^(@) cos 80^(@)=

Prove that: cos20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

Prove that :cos20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

Prove that cos20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)