Home
Class 14
MATHS
If sin(alpha+beta)=(4)/(5), sin(alpha-be...

If `sin(alpha+beta)=(4)/(5), sin(alpha-beta)=(5)/(13)`, find the value of `tan 2alpha`:

A

`(16)/(36)`

B

`(63)/(16)`

C

`(36)/(16)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 2\alpha \) given that \( \sin(\alpha + \beta) = \frac{4}{5} \) and \( \sin(\alpha - \beta) = \frac{5}{13} \), we can follow these steps: ### Step 1: Find \( \cos(\alpha + \beta) \) We know that: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] For \( \sin(\alpha + \beta) = \frac{4}{5} \): \[ \cos^2(\alpha + \beta) = 1 - \sin^2(\alpha + \beta) = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \] Thus, \[ \cos(\alpha + \beta) = \sqrt{\frac{9}{25}} = \frac{3}{5} \] ### Step 2: Find \( \cos(\alpha - \beta) \) For \( \sin(\alpha - \beta) = \frac{5}{13} \): \[ \cos^2(\alpha - \beta) = 1 - \sin^2(\alpha - \beta) = 1 - \left(\frac{5}{13}\right)^2 = 1 - \frac{25}{169} = \frac{144}{169} \] Thus, \[ \cos(\alpha - \beta) = \sqrt{\frac{144}{169}} = \frac{12}{13} \] ### Step 3: Calculate \( \tan(\alpha + \beta) \) and \( \tan(\alpha - \beta) \) Using the definitions of tangent: \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] \[ \tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \] ### Step 4: Use the formula for \( \tan 2\alpha \) We can use the formula: \[ \tan 2\alpha = \frac{\tan(\alpha + \beta) + \tan(\alpha - \beta)}{1 - \tan(\alpha + \beta) \tan(\alpha - \beta)} \] Substituting the values we found: \[ \tan 2\alpha = \frac{\frac{4}{3} + \frac{5}{12}}{1 - \left(\frac{4}{3} \cdot \frac{5}{12}\right)} \] ### Step 5: Simplify the numerator To add \( \frac{4}{3} \) and \( \frac{5}{12} \), we need a common denominator: \[ \frac{4}{3} = \frac{16}{12} \] So, \[ \tan 2\alpha = \frac{\frac{16}{12} + \frac{5}{12}}{1 - \frac{20}{36}} = \frac{\frac{21}{12}}{1 - \frac{5}{9}} \] ### Step 6: Simplify the denominator Calculating \( 1 - \frac{5}{9} \): \[ 1 - \frac{5}{9} = \frac{4}{9} \] ### Step 7: Final calculation Now substituting back: \[ \tan 2\alpha = \frac{\frac{21}{12}}{\frac{4}{9}} = \frac{21}{12} \cdot \frac{9}{4} = \frac{189}{48} \] Simplifying \( \frac{189}{48} \): \[ \tan 2\alpha = \frac{63}{16} \] Thus, the final answer is: \[ \tan 2\alpha = \frac{63}{16} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

cos(alpha-beta)=(3)/(5),sin(alpha+beta)=(5)/(13) then tan2 alpha

If cos(alpha+beta)=(5)/(13) and cos(alpha-beta)=(4)/(5) then find the value of tan2 beta

If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) and alpha, beta lie between 0^(@) and 45^(@) , find the value of tan 2alpha :

If cos(alpha+beta)=(4)/(5);sin(alpha-beta)=(5)/(13) and alpha,beta lie between 0&(pi)/(4) then find the value of tan2 alpha

If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha lie between 0 and (pi)/(4) , then find that value of tan2alpha .

If sin(alpha+beta)=1 and sin(alpha-beta)=(1)/(2), where 0<=,beta<=(pi)/(2) ,then find the values of tan(alpha+2 beta) and tan(2 alpha+beta)