Home
Class 14
MATHS
Find the value of (cos2B-cos 2A)/(sin2A+...

Find the value of `(cos2B-cos 2A)/(sin2A+sin2B)`:

A

`tan(A-B)`

B

`cos(A-B)`

C

`cot(A-B)`

D

`tan(A+B)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\cos 2B - \cos 2A) / (\sin 2A + \sin 2B)\), we can use trigonometric identities to simplify it step by step. ### Step 1: Apply the Cosine Difference Identity We can use the identity for the difference of cosines: \[ \cos x - \cos y = -2 \sin\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) \] Setting \(x = 2B\) and \(y = 2A\), we have: \[ \cos 2B - \cos 2A = -2 \sin\left(\frac{2B + 2A}{2}\right) \sin\left(\frac{2B - 2A}{2}\right) = -2 \sin(B + A) \sin(B - A) \] ### Step 2: Apply the Sine Sum Identity Next, we can use the identity for the sum of sines: \[ \sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] Setting \(x = 2A\) and \(y = 2B\), we have: \[ \sin 2A + \sin 2B = 2 \sin\left(\frac{2A + 2B}{2}\right) \cos\left(\frac{2A - 2B}{2}\right) = 2 \sin(A + B) \cos(A - B) \] ### Step 3: Substitute Back into the Expression Now we substitute these identities back into the original expression: \[ \frac{\cos 2B - \cos 2A}{\sin 2A + \sin 2B} = \frac{-2 \sin(B + A) \sin(B - A)}{2 \sin(A + B) \cos(A - B)} \] ### Step 4: Simplify the Expression The \(2\) in the numerator and denominator cancels out: \[ = \frac{-\sin(B - A)}{\cos(A - B)} \] Since \(\cos(A - B) = \cos(B - A)\), we can rewrite this as: \[ = -\tan(B - A) \] ### Final Result Thus, the value of the expression \(\frac{\cos 2B - \cos 2A}{\sin 2A + \sin 2B}\) simplifies to: \[ -\tan(B - A) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

(cos2B-cos2A)/(sin2B+sin2A)=tan(AB)

In quadrilateral ABCD, if sin((A+B)/(2))cos((A-B)/(2))+sin((C+D)/(2))cos((C-D)/(2))=2 then find the value of sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)

Knowledge Check

  • If A + B + C = 270^(@) , then the value of cos 2 A + cos 2 B + cos 2 C + 4 sin A sin B sin C is

    A
    0
    B
    1
    C
    2
    D
    3
  • Similar Questions

    Explore conceptually related problems

    If cos(A+B+C)=cos A cos B cos C, then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin2sin2C)

    The value of sin^2 A cos^2 B + cos^2 A cos^2 B+sin^2 A sin^2 B + cos^2A sin^2B is ……..

    If A+B+C=90^(@) then (cos2A+cos2B+cos2C-1)/(sin A sin B sin C)=

    Find the value of (a) sin(pi)/(10).sin(13pi)/(10) (b) cos^(2)48^(@)-sin^(2) 12^(@)

    If sin A+sin^(2)A=1, then the value of cos^(2)A+cos^(4)A is 2(b)1(c)-2(d)0

    If sin A+sin B=p,cos A+cos B=q Find the value of cos2A+cos2B

    to prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))